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Entropy Measures and Finance 

 The term entropy was first used in 1865 by German 
physicist Rudolf Clausius in the field of thermodynamics. 

 

 In Probability theory entropy measures the uncertainty of 
the random variable. 

 

 The application of entropy in finance can be regarded as the 
extension of the information entropy and the probability 
entropy. 



Entropy Measures and Finance 

 In last two decades the entropy has been important tool 
for the selection of portfolio, asset pricing and option 
pricing, Measuring Stock market volatility, in financial 
literature. 
 

 The Black-Scholes Model (1973) is a Mathematical 
description of financial markets and derivative 
investment instruments. 
 

 The present structure of stock option pricing is based on 
Black and Scholes model, but the model has some 
restricted assumptions and contradicts with modern 
research in financial literature. 



Entropy Measures and Finance 

 In Option Pricing the Black-Scholes model (1973) is 
crucial and the model is governed by Geometric 
Brownian Motion (GBM) based on stochastic calculus. 

 

 The current technology of stock option pricing (Black-
Scholes model) depends on two factors. 

 (a) No arbitrage which implies the universe of risk-
neutral probabilities. 

 

 (b) Parameterization of risk-neutral probability by a 
reasonable stochastic process. 



 This implies risk-neutral probabilities are vital in 
this framework. 

 

 The EPT of Les Gulko is an alternative approach of 
constructing risk-neutral probabilities without 
depending on stochastic calculus. 

 The work of Les Gulko (1997) "Entropy Pricing 
Theory" is a fundamental tool for further 
developments in finance using Statistical Physics. 



Some Frequently Used Entropy Measures  in 
Finance 

 Some examples of entropy measures mostly used in 
finance are: Shannon′s, Tsallis,Kaniadakis,Renyi′s, 
Ubriaco′s, and Shafee′s and many others extensions. 

 

 The Shannon Entropy: The Shannon entropy for 
a discrete time /continuous time random variable of 
probability measure p on a finite set X is given by 
respectively: 
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Tsallis Entropy 

 Tsallis Entropy: Tsallis entropy of order q of a 
probability measure p on a finite set X is defined as : 
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Ubriaco Entropy Measure 

 Ubriaco (2009) proposed a new entropy measure 
based on fractional calculus and showed this new 
entropy has the same properties as Shannon entropy 
except additivity. 

 

 

 

 Similarly in the continuous case: 
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Shafee Entropy Measure 

 We obtain the Shannon entropy for  d=1 

 

 In 2007 non additive entropy was proposed by 
Shafee. It gives the general form that is non-
extensive like Tsallis, but is linearly dependent on 
component entropies.  

 The mathematical description of the new entropy 
functions was in discrete case and for our problem 
we consider the continuous cases as an analogue of 
the discrete case: 
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Rényi Entropy Measure 

 The Rényi entropy is named after Alfréd Rényi and 
in the field of information theory the Rényi entropy 
generalizes, the Shannon entropy. 

 

 In financial modeling most of the entropy based 
calibration methods depend on the use of the 
logarithmic entropy measure of Shannon. 

 

 A one parameter family of entropies generalizing the 
logarithmic entropy measure of Shannon and Wiener 
was considered by Rényi. 



Rényi Entropy Measure 

 In 2007 Dorje et al. [6] have studied the case of 
Rényi entropy for calibration of option pricing and 
explained a piece of information that one drawback 
in the use of logarithmic entropy measures. 

 

 The use of Rényi entropy is the more general case for 
the calibration of risk neutral price distribution. 

 

 The Rényi entropy of order r  where  r is  greater than 
zero,  is defined as: 

 



Rényi Entropy Measure 

 i.e. 

 

 

 In the case of continuous random variable we may 
write Rényi entropy as: 

 

 

 the Rényi entropy is just the logarithm of the size of 
the support of and for r approaches to 1 , equals to 
Shannon's entropy. 
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EPT  Framework  
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EPT  Framework  
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Shafee Entropy and Risk Neutral Densities 

 Preda and Sheraz have recently studied Shafee 
entropy maximization problems for the case of risk 
neutral densities. They have obtained solutions for 
various cases such as weighted Shafee entropy 
maximization problem,  Expected Utility-Weighted 
Shafee Entropy (EU-WSE) frame work . 

 

 The weighted entropy was first defined by Guiasu 
[11], considering the two basic concepts of objective 
probability and subjective utility. 



Shafee Entropy and Risk Neutral Densities 

 Theorem 2.1. 
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  ,      .nare Langrage multipliers and W is the Lambert function



Ubriaco Entropy Measure and Risk Neutral 
Densities 

 We consider the analogue of the discrete case of non 
additive entropy defined by Ubriaco. We suppose 
that all expectations are also well defined and 
underlying optimization problems admit solutions 
for some continuous cases. 
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Ubriaco Entropy Measure and Risk Neutral 
Densities 

 Consider the following example of theorem  for  risk 
neutral density via Ubriaco entropy measure. 

 Theorem 2.2 
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Ubriaco Entropy Measure and Risk Neutral 
Densities 
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Rényi Entropy Measure and Risk Neutral 
Densities 

 Theorem 2.3. Consider the Rényi entropy 
maximization problem: 
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Weighted-Rényi Entropy Measure and Risk 
Neutral Densities 

Theorem 2.4 Consider the weighted- Rényi entropy 
maximization problem: 
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Rényi Entropy Measure and EU-WE Framework  

 Casquilho et al. [4] used EU-WE i.e. expected utility- 
weighted entropy framework under a 1-parameter 
generalization of Shannon formula focused on an 
ecological and economic application at the landscape 
level. Following this approach the EU-WE 
framework, if u is a positive utility application on G . 
In the next theorem we present a new result for the 
risk-neutral density using the frame of expected 
utility-weighted entropy for the case of Rényi-
entropy maximization problem. 

 



 Theorem 2.5 Consider the case of Rényi-entropy 
maximization problem:  
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Pricing European Call and Put Options 
 

 We use the new risk neutral density functionS  obtained 
in the case of Rényi entropy, to evaluate the European 
call and put options on a dividend protected stocks. At 
time to expiry T , a call option pays             and a put 
option pays                  is the  K  strike price. 

 

 We use the linear pricing rule and the risk neutral 
density . Then the price of European Call can be written 
as follows: 
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Pricing European Call and Put Options 
 

 For European Call: 

 

 

 

 For European Put: 
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