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Abstract: The region of entropic vectors Γ
∗
N has been shown to be at the core of determining

fundamental limits for network coding, distributed storage, conditional independence
relations, and information theory. Characterizing this region is a problem that lies at
the intersection of probability theory, group theory, and convex optimization. A 2N -1
dimensional vector is said to be entropic if each of its entries can be regarded as the
joint entropy of a particular subset of N discrete random variables. While the explicit
characterization of the region of entropic vectors Γ

∗
N is unknown for N > 4, here we prove

that only one form of nonlinear non-shannon inequality is necessary to fully characterize
Γ
∗
4. We identify this inequality in terms of a function that is the solution to an optimization

problem. We also give some symmetry and convexity properties of this function which rely
on the structure of the region of entropic vectors and Ingleton inequalities. This result shows
that inner and outer bounds to the region of entropic vectors can be created by upper and
lower bounding the function that is the answer to this optimization problem.
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1. Introduction

The region of entropic vectors Γ
∗
N has been shown to be a key quantity in determining fundamental

limits in several contexts in network coding [1], distributed storage [2], group theory [3], and information
theory [1]. Γ

∗
N is a convex cone that has recently shown to be non-polyhedral [4], but its boundaries

remain unknown. In §2, we give some background on the region of entropic vectors and outer bounds
for it. In §3, we review inner bounds for this region, then characterize the gap between the Shannon outer
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bound and the Ingleton inner bound for 4 random variables. Next, in §4, we present our main result in
which we argue the complete characterization of Γ

∗
4 can be seen as finding a single nonlinear inequality

determined by a single nonlinear function. After defining the function as the solution to an optimization
problem, we investigate some properties of it.

2. The Region of Entropic Vectors

Consider a set of N discrete random variables X = (X1, . . . , XN), N = {1, . . . , N} with joint
probability mass function pX(x). For every non-empty subset of these random variables XA :=

(Xn | n ∈ A ), A ⊂ {1, . . . , N}, there is a Shannon entropy H(XA ) associated with it, which can be
calculated from pXA

(xA ) =
∑

xN \A
pXN

(x) via

H(XA ) =
∑

xA

−pXA
(xA ) log2 pXA

(xA ) (1)

If we stack these 2N -1 joint entropies associated with all the non-empty subsets into a vector h =

h(pX) = (H(XA )|A ⊆ N ), h(pX) is clearly a function of the joint distribution pX . A vector
h? ∈ R2N−1 is said to be entropic if there exist some joint distribution pX such that h? = h(pX). Γ∗N is
then defined as the image of the set D = {pX |pX(x) ≥ 0,

∑
x pX(x) = 1}:

Γ∗N = h(D) ( R2N−1 (2)

The closure of this set Γ
∗
N is a convex cone [1], but surprisingly little else is known about the boundaries

of it for N ≥ 4.
With the convention that h∅ = 0, entropy is sub-modular [1,5], meaning that

hA + hB ≥ hA ∩B + hA ∪B ∀A ,B ⊆ N , (3)

and is also non-decreasing and non-negative, meaning that

hA ≥ hB ≥ 0 ∀B ⊆ A ⊆ N . (4)

The inequalities (3) and (4) together are known as the polymatroidal axioms [1][5], a function satisfy
them is called the rank function of a polymatroid. If in addition to obeying the polymatroidal axioms (3)
and (4), a set function r also satisfies

rA ≤ |A |, rA ∈ Z ∀A ⊆ N (5)

then it is called the rank function of a matroid on the ground set N .
Since an entropic vector must obey the polymatroidal axioms, the set of all valid rank functions of

polymatroids forms a natural outer bound for Γ∗N and is known as the Shannon outer bound ΓN [1,5]:

ΓN =




h

∣∣∣∣∣∣∣

h ∈ R2N−1

hA + hB ≥ hA ∩B + hA ∪B ∀A ,B ⊆ N

hP ≥ hQ ≥ 0 ∀Q ⊆P ⊆ N





(6)
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ΓN is a polyhedron, we have Γ2 = Γ∗2 and Γ3 = Γ
∗
3, for N ≥ 4, however, ΓN 6= Γ

∗
N . Zhang and Yeung

first showed this in [5] by proving a new inequality among 4 variables

2I(C;D) ≤ I(A;B) + I(A;C,D) + 3I(C;D|A) + I(C;D|B) (7)

which held for entropies, but is not implied by the polymatroidal axioms. They called it a non-Shannon
type inequality to distinguish it from inequalities implied by ΓN . In the next few years, a few authors
have generated new non-Shannon type inequalities [6–8]. Then Matúš in [4] showed that Γ

∗
N is not a

polyhedron for N ≥ 4. The proof was carried out by constructing several sequences of non-Shannon
inequalities, including

s[I(A;B|C) + I(A;B|D) + I(C;D)− I(A;B)] + I(B;C|A) +
s(s+ 1)

2
[I(A;C|B) + I(A;B|C)] ≥ 0

(8)
Notice that (8) is the same as Zhang-Yeung inequality (7) when s = 1. Additionally, the infinite sequence
of inequalities was used with a curve constructed from a particular form of distributions to prove Γ

∗
N is

not a polyhedron. Despite this characterization, even Γ
∗
4 is still not fully understand. Since then, many

authors has been investigating the properties of Γ
∗
N with the hope of ultimately fully characterizing the

region [6,9–14].

3. Structure of Γ
∗
4: the gap between Ingleton inner bound S4 and Shannon outer bound Γ4

Let’s first introduce some basics in linear polymatroids and the Ingeton inner bound. Fix a N ′ > N ,
and partition the set {1, . . . , N ′} into N disjoint sets T1, . . . ,TN . Let U be a length r row vector whose
elements are i.i.d. uniform over GF (q), and let G be a particular r × N ′ deterministic matrix with
elements in GF (q). Consider the N ′ dimensional vector

Y = UG, and define X i = Y Ti
, i ∈ {1, . . . , N}.

The subset entropies of the random variables {X i} obey

H(XA ) = r(A ) log2(q) = rank ([GTi
|i ∈ A ]) log2(q). (9)

A set function r(·) created in such a manner is called a linear polymatriod or a subspace rank
functions. It obeys the polymatroidal axioms, and is additionally proportional to an integer valued vector,
however it need not obey the cardinality constraint therefore it is not necessarily the rank function of a
matroid.

Such a construction is clearly related to a representable matroid on a larger ground set[15]. Indeed,
the subspace rank function vector is merely formed by taking some of the elements from the 2N

′-1
representable matroid rank function vector associated with G. That is, rank function vectors created via
(9) are projections of rank function vectors of representable matroids.

Rank functions capable of being represented in the manner for some N ′, q and G, are called subspace
ranks in some contexts [16–18], while other papers effectively define a collection of vector random
variables created in this manner a subspace arrangement [19].

Define SN to be the conic hull of all subspace ranks for N subspaces. It is known that SN is an inner
bound for Γ

∗
N [16], which we call subspace inner bound. So far SN is only known for N ≤ 5 ([18,19]).
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More specifically, S2 = Γ
∗
2 = Γ2, S3 = Γ

∗
3 = Γ3. As with most entropy vector sets, things start to get

interesting at N = 4 variables (subspaces). For N = 4, S4 is given by the Shannon type inequalities
(i.e. the polymatroidal axioms) together with six additional inequalities known as Ingleton’s inequality
[16,17,20] which states that for N = 4 random variables

Ingletonij = I(Xk;Xl|Xi) + I(Xk;Xl|Xj) + I(Xi;Xj)− I(Xk;Xl) ≥ 0 (10)

Thus, S4 is usually called the Ingleton inner bound. We know Γ4 is generated by 28 elemental
Shannon type information inequalities[1]. As for S4, in addition to the the 28 Shannon type information
inequalities, we also need six Ingleton’s inequalities (10), thus S4 ( Γ4.

In [17] it is stated that Γ4 is the disjoint union of S4 and six cones {h ∈ Γ4|Ingletonij < 0}. The six
cones Gij

4 = {h ∈ Γ4|Ingletonij ≤ 0} are symmetric due to the permutation of inequalities Ingletonij ,
so it sufficient to study only one of the cones. Furthermore, [17] gave the extreme rays of Gij

4 in Lemma
1 by using the following functions.
For N = {1, 2, 3, 4}, with I ⊆ N and 0 ≤ t ≤ |N \I |, define

rI
t (J ) = min{t, |J \I |} with J ⊆ I

g
(2)
i (J ) =

{
2 if J = i

min{2, |J |} if J 6= i

g
(3)
i (J ) =

{
|J | if i 6∈J

min{3, |J |+ 1} if i ∈J

fij(K ) =

{
3 if K ∈ {ik, jk, il, jl, kl}
min{4, 2|K |} otherwise

Lemma 1. (Matúš)[17] The cone Gij
4 = {h ∈ Γ4|Ingletonij ≤ 0}, i, j ∈ N distinct is the convex hull

of 15 extreme rays. They are generated by the 15 linearly independent functions fij , r
ijk
1 , rijl1 , rikl1 , rjkl1 ,

r∅1, r∅3, ri1, rj1, rik1 , rjk1 , ril1 , rjl1 , rk2 , rl2, where kl = N \ij.

Note that among the 15 extreme rays of Gij
4 , 14 extreme rays rijk1 , rijl1 , rikl1 , rjkl1 , r∅1, r∅3, ri1, rj1, rik1 ,

rjk1 , ril1 , rjl1 , rk2 , rl2 are also extreme rays of S4 and thus entropic, which leaves fij the only extreme ray
in Gij

4 that is not entropic. It is easily verified that Γ
∗
4 is known as long as we know the structure of six

cones Γ
∗
4∩Gij

4 . Due to symmetry, we only need to focus on one of the six cones Γ
∗
4∩G34

4 , thus we define
P 34

4 = Γ
∗
4 ∩G34

4 and study the properties of P 34
4 in the rest of the paper.

4. Understanding the structure of P 34
4 by projection

4.1. Derivation of a single nonlinear function

One way to propose the problem of characterizing the entropy region is by the following optimization
problem

γ(a) = min
h∈Γ∗N

∑

A⊆N

aA hA (11)
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where aA ∈ R and a = [aA |A ⊆ N ]. The resulting system of inequalities {aTh ≥ γ(a)| ∀a ∈
R2N−1}, has each inequality linear in h, and the minimal, non-redundant, subset of these inequalities
is uncountably infinite due to the non-polyhedral nature of Γ̄∗N . Hence, while solving the program in
principle provides a characterization to the region of entropic vectors, the resulting characterization with
uncountably infinite cardinality is likely to be very difficult to use.

By studying the conditions on the solution to 11, in [3], the authors defined the notion of a
quasi-uniform distribution and made the following connection between Γ∗n and Λn (the space of entropy
vectors generated by quasi-uniform distributions).

Theorem 1. (Chan)[3] The closure of the cone of Λn is the closure of Γ∗n : con(Λn) = Γ
∗
n

From Theorem 1, we know finding all entropic vectors associated with quasi-uniform distribution are
sufficient to characterize the entropy region, however, determining all quasi-uniform distributions is a
hard combinatorial problem, while taking their conic hull and reaching a nonlinear inequality description
of the resulting non-polyhedral set appears even harder, perhaps impossible. Thus new methods to
simplify the optimization problem should be explored. Our main result in the next theorem shows that
in order to characterize Γ

∗
4, we can simplify the optimization problem (11) by utilizing extra structure of

P 34
4 .

Theorem 2 (Only one non-Shannon inequality is necessary). To determine the structure of Γ
∗
4, it suffices

to find a single nonlinear inequality. In particular, select any hA ∈ Ingletonij . The region P ij
4 is

equivalently defined as:

P ij
4 =




h ∈ R15

∣∣∣∣∣∣∣

Ah\A 6 b (= Gij
4 project out hA )

hA > glowA (h\A )

hA 6 gupA (h\A )





(12)

where h\A is the 14 dimensional vector excluding hA ,

glowA (h\A ) = min
[hA hT

\A ]T∈P ij
4

hA , (13)

gupA (h\A ) = max
[hA hT

\A ]T∈P ij
4

hA . (14)

Furthermore, if the coefficient of hA in Ingletonij is positive, hA 6 gupA (h\A ) is the inequality
Ingletonij 6 0. Similarly, if the coefficient of hA in Ingletonij is negative, hA > glowA (h\A ) is the
inequality Ingletonij 6 0.

Proof: We know G34
4 is a 15 dimensional polyhedral cone. Inside this cone, some of the points are

entropic, some are not, that is to say, P 34
4 ( G34

4 . From Lemma 1 we obtain the 15 extreme rays of
G34

4 : f34, r134
1 , r234

1 , r123
1 , r124

1 , r∅1, r∅3, r3
1, r4

1, r13
1 , r14

1 , r23
1 , r24

1 , r1
2, r2

2, where each of these extreme rays
are 15 dimensional, corresponding to the 15 joint entropy hA for A ⊂ N . The elements of these
extreme rays are listed in Fig. 1. As shown in Fig. 1 with the green rows, if we project out h123 from
these 15 extreme rays, the only ray which is not entropic, f34, falls into the conic hull of the other 14
entropic extreme rays, that is to say, π\h123P

34
4 = π\h123G

34
4 . Furthermore, one can easily verify that the
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Figure 1. The extreme rays of G34
4 . The top row is the ray f34, and all of its coefficients

except in the red column (corresponding to h123) are the sum of the entries in the green rows.
Hence π\h123G

34
4 is entirely entropic.

Structure of Γ̄∗
4: Dropping h123

h1 h2 h12 h3 h13 h23 h123 h4 h14 h24 h124 h34 h134 h234 h1234

2 2 3 2 3 3 4 2 3 3 4 4 4 4 4
1 0 1 1 1 1 1 0 1 0 1 1 1 1 1
0 1 1 1 1 2 2 1 1 2 2 2 2 2 2
1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
0 1 1 0 0 1 1 1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
0 1 1 1 1 1 1 0 0 1 1 1 1 1 1
1 0 1 1 2 1 2 1 2 1 2 2 2 2 2
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 2 1 2 2 3 1 2 2 3 2 3 3 3
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

h1 h2 h12 h3 h13 h23 h123 h4 h14 h24 h124 h34 h134 h234 h1234

0 0 0 1 0 0 0 1 0 0 0 −1 0 0 0
−1 0 0 0 1 0 0 0 1 0 0 0 −1 0 0
−1 0 1 0 0 0 0 0 1 0 −1 0 0 0 0
−1 0 1 0 1 0 −1 0 0 0 0 0 0 0 0
0 −1 0 0 0 1 0 0 0 1 0 0 0 −1 0
0 −1 1 0 0 0 0 0 0 1 −1 0 0 0 0
0 −1 1 0 0 1 −1 0 0 0 0 0 0 0 0
0 0 0 −1 1 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 −1 1 1 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 −1 1 1 −1
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1
1 1 −1 0 −1 −1 1 0 −1 −1 1 1 0 0 0

P̄∗
12 =





Ah\123 ≤ b (= Shannon)

h123 ≥ glow(h\123)

h123 ≤ gup(h\123)





glow(h\123) = −h1 −h2 +h12 +h23 +

h13 + h14 + h24 − h124 − h34

The problem of determining Γ̄∗
4 is

equivalent, e.g., to determining a

single nonlinear function:

gup : π\123P12 → R+

gup(h\123) := max�
h123,hT

\123

�T
∈P̄∗

12

h123

E.g. Shannon says gup(h\123) ≤ min{h2|1 + h13, h2|3 + h13, h1|2 + h23, h1234}
The lists of non-Shannon inequalities make the list of linear equations in the min larger.

27

same statement holds if we drop any one of the 10 joint entropies hA ∈ Ingleton34 by summing other
extreme ray rows to get all but the dropped dimension. This then implies that for hA ∈ Ingleton34

the projected polyhedron π\hA
G34

4 (from which the dimension hA is dropped) is entirely entropic, and
hence π\hA

P 34
4 = π\hA

G34
4 . Hence, for some hA with a non-zero coefficient in Ingleton34, given any

point h\A ∈ π\hA
G34

4 (= π\hA
P 34

4 ), the problem of determining whether or not [hA hT\A ]T is an entropic
vector in P 34

4 is equivalent to determining if hA is compatible with the specified h\A , as P 34
4 is convex.

The set of such compatible hA s must be an interval [glow(h\A ), gup(h\A )] with functions defined via
(13) and (14). This concludes the proof of (12).

To see why one of the two inequalities in (14),(13) is just the Ingleton inequality Ingleton34, observe
that for the case of dropping out h123, the only lower bound for h123 inG34

4 is given by Ingleton34 6 0 (all
other inequalities have positive coefficients for this variable in the non-redundant inequality description
of G34

4 depicted in Fig. 2). Thus, if h ∈ P 34
4 , then h ∈ G34

4 , and

h123 > glow123(h\123) > −h1 − h2 + h12 + h13 + h23 + h14 + h24 − h124 − h34

Furthermore, {Ingleton34=0 ∩ G34
4 } = {Ingleton34=0 ∩ P 34

4 } since all {Ingleton34 = 0} rays of
the outer bound G34

4 are entropic, and there is only one ray with a non-zero Ingleton34, so the extreme
rays of {Ingleton34=0 ∩ G34

4 } are all entropic. This means that for any h\123 ∈ π\123G
34
4 , the minimum

for h123 specified by Ingleton34 is attainable, and hence glow123(h\123) = −h1 − h2 + h12 + h13 + h23 +

h14 + h24 − h124 − h34.
Thus, the problem of determining Γ

∗
4 is equivalent to determining a single nonlinear function

gup123(h\123). A parallel proof applied for other hA with a non-zero coefficient in Ingletonij yields the
remaining conclusions. �
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Figure 2. The coefficients of the non-redundant inequalities inG34
4 . Note that in each column

where Ingleton34 has a non-zero coefficient, it is the only coefficient with its sign.

Structure of Γ̄∗
4: Dropping h123

h1 h2 h12 h3 h13 h23 h123 h4 h14 h24 h124 h34 h134 h234 h1234

2 2 3 2 3 3 4 2 3 3 4 4 4 4 4
1 0 1 1 1 1 1 0 1 0 1 1 1 1 1
0 1 1 1 1 2 2 1 1 2 2 2 2 2 2
1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
0 1 1 0 0 1 1 1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
0 1 1 1 1 1 1 0 0 1 1 1 1 1 1
1 0 1 1 2 1 2 1 2 1 2 2 2 2 2
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 2 1 2 2 3 1 2 2 3 2 3 3 3
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

h1 h2 h12 h3 h13 h23 h123 h4 h14 h24 h124 h34 h134 h234 h1234

0 0 0 1 0 0 0 1 0 0 0 −1 0 0 0
−1 0 0 0 1 0 0 0 1 0 0 0 −1 0 0
−1 0 1 0 0 0 0 0 1 0 −1 0 0 0 0
−1 0 1 0 1 0 −1 0 0 0 0 0 0 0 0
0 −1 0 0 0 1 0 0 0 1 0 0 0 −1 0
0 −1 1 0 0 0 0 0 0 1 −1 0 0 0 0
0 −1 1 0 0 1 −1 0 0 0 0 0 0 0 0
0 0 0 −1 1 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 −1 1 1 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 −1 1 1 −1
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1
1 1 −1 0 −1 −1 1 0 −1 −1 1 1 0 0 0

P̄∗
12 =





Ah\123 ≤ b (= Shannon)

h123 ≥ glow(h\123)

h123 ≤ gup(h\123)





glow(h\123) = −h1 −h2 +h12 +h23 +

h13 + h14 + h24 − h124 − h34

The problem of determining Γ̄∗
4 is

equivalent, e.g., to determining a

single nonlinear function:

gup : π\123P12 → R+

gup(h\123) := max�
h123,hT

\123

�T
∈P̄∗

12

h123

E.g. Shannon says gup(h\123) ≤ min{h2|1 + h13, h2|3 + h13, h1|2 + h23, h1234}
The lists of non-Shannon inequalities make the list of linear equations in the min larger.

27

From Theorem 2, we ten nonlinear inequalities (depending on which A with hA appearing in
Ingletonij is selected), any single one of which completely determines P ij

4 , and thus, with its six
permutations, determine Γ

∗
4. This theorem largely simplifies the optimization problem of determining

Γ
∗
4, in that we only need to work on maximizing or minimizing a single entropy hA given any h\A in the

polyhedral cone π\hA
Gij

4 , which is entirely entropic.

4.2. Properties of gupA (h\A ) and glowA (h\A )

Based on the analysis in the above section, once we know any one of the ten nonlinear functions,
gup1 (h\1), gup2 (h\2), gup34 (h\34), gup123(h\123), gup124(h\124), glow12 (h\12), glow13 (h\13), glow14 (h\14), glow23 (h\23),
and glow24 (h\24) we know P 34

4 and hence Γ
∗
4.

In this section, we investigate the properties of these functions, including the properties of a single
nonlinear function, as well as the relationship between different nonlinear functions. The first result is
the convexity of −gupA (h\A ) and glowA (h\A ).

Lemma 2. The following functions corresponding to P 34
4 are convex:

−gup1 (h\1), −gup2 (h\2), −gup34 (h\34),−gup123(h\123), −gup124(h\124)

glow12 (h\12), glow13 (h\13), glow14 (h\14), glow23 (h\23), glow24 (h\24)

Proof: Without loss of generality, we investigate the convexity of gup1 (h\1). Let ha = [ha1 ha\1]T ,
hb = [hb1 hb\1]T be any two entropic vectors in the pyramid P 34

4 . Since Γ
∗
4 is a convex set, P 34

4 is also
convex. Thus for ∀ 0 6 λ 6 1, we have λha + (1− λ)hb ∈ P 34

4 . According to Theorem 2, we have

λha1 + (1− λ)hb1 6 gup1 (λha\1 + (1− λ)hb\1) (15)

Furthermore, for some ha and hb to make gup1 tight, besides (15), the following two conditions also hold:

ha1 6 ha1 = gup1 (ha\1) hb1 6 hb1 = gup1 (hb\1) (16)



Entropy 2015, xx 8

Combining (15) and (16), we get

λha1 + (1− λ)hb1 6 λha1 + (1− λ)hb1 =

λgup1 (ha\1) + (1− λ)gup1 (hb\1) 6 gup1 (λha\1 + (1− λ)hb\1)

Thus gup1 (h\1) is a concave function. Similarly we can prove the convexity of other functions listed
above. �

Next we would like to study the symmetry properties of gup1 (h\1). From the form of Ingleton
inequality (10), we notice that for a given distribution, if we swap the position of Xi and Xj , the
value calculated from Ingletonij remain unchanged, same properties hold if we exchange Xk and Xl.
However, for a given distribution which has its entropic vector ha tight on gup1 (thus ha1 = gup1 (ha\1)), due
to symmetry, the entropic vector hb corresponding to the distribution swapping Xi and Xj(and/or swap
Xk and Xl) will still be on the boundary and satisfy hb1 = gup1 (hb\1). Based on this fact, and that gup1 (h\1)

is a concave function, we get the following theorem.

Theorem 3. Suppose we have a distribution pX with corresponding entropic vector ha tight on gup1 , and
denote hb the entropic vector from swapping X3 and X4 in pX , then gup1 (ha\1) = gup1 (hb\1) and

max
λ∈[0, 1]

gup1 (λha\1 + (1− λ)hb\1) = gup1 (
1

2
ha\1 +

1

2
hb\1) (17)

thus the maximum of gup1 along λha\1+(1−λ)hb\1 must be obtained at entropic vectors satisfying h3 = h4,
h13 = h14, h23 = h24 and h123 = h124.

Proof: First we need to point out the symmetry between ha and hb caused by the exchange of X3 and
X4. For

ha = [ha1 h
a
2 h

a
12 h

a
3 h

a
13 h

a
23 h

a
123h

a
4h

a
14 h

a
24 h

a
124 h

a
34 h

a
134 h

a
234 h

a
1234] (18)

it can be easily verified that

hb = [ha1 h
a
2 h

a
12 h

a
4 h

a
14 h

a
24 h

a
124h

a
3h

a
13 h

a
23 h

a
123 h

a
34 h

a
134 h

a
234 h

a
1234] (19)

Since both ha and hb are tight on gup1 ,

ha1 = gup1 (ha\1) hb1 = gup1 (hb\1)

Thus ha1 = hb1 implies gup1 (ha\1) = gup1 (hb\1), which also guarantee gup1 (λha\1 + (1− λ)hb\1) = gup1 ((1−
λ)ha\1 + λhb\1).
Now we proof (17) by contradiction, suppose ∃λ′ ∈ [0, 1], λ′ 6= 1

2
such that

gup1 (λ′ha\1 + (1− λ′)hb\1) > gup1 (
1

2
ha\1 +

1

2
hb\1) (20)
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Since gup1 (h\1) is a concave function,

gup1 (λ′ha\1 + (1− λ′)hb\1)

= gup1 ((1− λ′)ha\1 + λ′hb\1)

=
1

2
gup1 (λ′ha\1 + (1− λ′)hb\1) +

1

2
gup1 ((1− λ′)ha\1 + λ′hb\1)

6 gup1 (
1

2
[λ′ha\1 + (1− λ′)hb\1] +

1

2
[(1− λ′)ha\1 + λ′hb\1])

= gup1 (
1

2
ha\1 +

1

2
hb\1)

which contradicts the assumption, and proves (17). Because of the symmetry between ha in (18) and hb

in (19), entropic vector 1
2
ha\1 + 1

2
hb\1 will have the properties that h3 = h4, h13 = h14, h23 = h24 and

h123 = h124. �

Next we are going to investigate the relationship between gup1 and gup2 by swapping X1 and X2 OR
swapping both X1, X2 and X3, X4. For a distribution pX with corresponding entropic vector ha tight
on gup1 , we denote hc the entropic vector from swapping X1 and X2 in pX , hd be entropic vector from
swapping both X1, X2 and X3, X4. For

ha = [ha1 h
a
2 h

a
12 h

a
3 h

a
13 h

a
23 h

a
123h

a
4h

a
14 h

a
24 h

a
124 h

a
34 h

a
134 h

a
234 h

a
1234]

it can be easily verified that

hc = [ha2 h
a
1 h

a
12 h

a
3 h

a
23 h

a
13 h

a
123h

a
4h

a
24 h

a
14 h

a
124 h

a
34 h

a
234 h

a
134 h

a
1234] (21)

hd = [ha2 h
a
1 h

a
12 h

a
4 h

a
24 h

a
14 h

a
124h

a
3h

a
23 h

a
13 h

a
123 h

a
34 h

a
234 h

a
134 h

a
1234] (22)

Thus from ha1 = hc2 = hd2 we get

gup1 (ha\1) = gup2 (hc\2) = gup2 (hd\2) (23)

which leads to the following theorem:

Theorem 4. Suppose we have a distribution pX with corresponding entropic vector ha tight on gup1 ,
we denote by hc the entropic vector from swapping X1 and X2 in pX , and hd the entropic vector from
permuting both X1, X2 and X3,X4. Then

gup1 (ha\1) = gup2 (hc\2) = gup2 (hd\2) (24)

Furthermore, if the entropic vector he associated with some distribution pX satisfies h13 = h23,
h14 = h24 and h134 = h234, then gup1 (he\1) = gup2 (he\1); if the entropic vector hfE associated with
some distribution pX satisfies h3 = h4, h13 = h24, h14 = h23, h123 = h124 and h134 = h234, then
gup1 (hfE\1 ) = gup2 (hfE\1 ).

Example 1: In order to explain Theorem 4, we consider the example such that we fix the last 13
dimension of entropic vector to V = [3 2 3 3 4 2 3 3 4 4 4 4 4] and only consider the first two dimensions
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Figure 3. Entropic vector hyperplane with only h1 and h2 coordinate not fixed

h1 axis

h2

f = f34 = [2 2 V ]

V = [3 2 3 3 4 2 3 3 4 4 4 4 4]

Matúš s = 7

Matúš s = 2

Zhang-Yeung Ineq

Ingleton34

a
b

c

d

e

a = [1 2 V ] = r13
1 + r14

1 + r2
2

e = [2 1 V ] = r23
1 + r24

1 + r1
2

b = [x y V ]

d = [y x V ]

c = [4 � 3
2 log2 3 4 � 3

2 log2 3 V ]

f

axis

h1 and h2, which is shown in Figure 3. Since Γ∗4 is a 15 dimensional convex cone, if we fixed 13
dimensional to V, only h1 and h2 should be considered, thus we can easily plot the constrained region
for visualization.

In Figure 3, f is the one of the 6 bad extreme rays(extreme rays of Γ4 that are not entropic). The
rectangle formed by connecting (0,0), (2,0), (0,2) and f is the mapping of Shannon outer bound Γ4

onto this plane. The green line connecting a and e is the projection of Ingleton34 onto the plane.
Notice we also plot inequality (7) and (8) for some values of s in the figure for the comparison between
Ingleton inner bound, Shannon outer bound and non-Shannon outer bound. The red dot point c is the
entropic vector of the binary distribution with only four outcomes: (0000)(0110)(1010)(1111), each of
the outcomes occur with probability 1

4
, and following from the convention of [21], we call it the 4 atom

uniform point.
Since we already know a = [1 2 V ] and e = [2 1 V ] must lie on the boundary of P 34

4 , thus
gup1 ([2 V ]) = gup2 ([2 V ]) and gup1 ([1 V ]) = gup2 ([1 V ]). More generally, for any entropic vector b = [x y V ]

on the boundary, we have gup1 ([x V ]) = gup2 ([x V ]) and gup1 ([y V ]) = gup2 ([y V ]). Thus we can say that
when we constrain the last 13 dimension of entropic vector to V = [3 2 3 3 4 2 3 3 4 4 4 4 4], the two
function gup1 and gup2 always give us the same value, that is to say they are identical when fixed in this
hyperplane.
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5. Conclusions

In this paper, we proved that the problem of characterizing the region of entropic vectors was
equivalent to finding a single non-linear inequality solving one of ten interchangeable optimization
problems. Additionally, we investigated some symmetry and convexity based properties of the functions
that are the solutions to these optimizations problem. Our future work is focused on calculating upper
and lower bounds for these nonlinear functions.
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