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Abstract: The global automotive industry faces the challenge of increasing engine efficiency,
reducing fuel consumption and the size of them gradually. Not only the engine block must reduce
its size, but also other components, requiring more compact and flexible designs using materials
such as thermoplastic elastomers. That kind of materials are used due to their characteristics, such
as ability of deformation, durability, recyclability, and its cost/weight ratio. They are able to hold
large deformations and they have very good damping characteristics, making them suitable for use
in energy dissipation. Characterization of the dynamic mechanical properties of these materials is
essential to make a correct analysis and modeling of the behavior of components. Although the
constitutive models of these materials are complex due to high deformability,
quasi-incompressibility, softening, and time dependent effects, typically, these materials have a
mechanical behavior which can be represented by a phenomenological hyperelastic model. While it
is easy to fit a model of elastic behavior, set a model for a hyperelastic material is a very complex
task, so in practice simplified models are used. This paper proposes a comprehensive comparison
of six hyperelastic models to simulate the behavior of Santoprene 101-73 material manufactured by
ExxonMobil. The ability of these models to reproduce different types of loading conditions is
analyzed through uniaxial tensile data obtained experimentally. The parameters of each of the
hyperelastic models are determined by a least-squares fit and then a classification of these six
models is established, highlighting those that are most suitable for characterizing the material.

Keywords: Thermoplastic elastomers; hyperelastic; Santoprene.

1. Introduction

During the last decades the use of polymeric materials has been increased significantly in key
industry sectors such as the automotive sector [1, 2]. This is mainly due to the technological capacity
of these materials to achieve complex geometries with assumable economic and time costs [3]. In
addition, they have other advantages over other materials such as its low density and its thermal
and electrical insulation [4].

In the automotive industry, within the family of polymers, thermoplastic elastomeric materials
have an increasingly important role [5]. Besides they are used as the main material in such important
components as tires, they play an essential role in components such as air ducts engine [6]. Lightness,
manufacturing capacity, deformability and vibration absorption capability [4] of these materials
make them suitable for the manufacture of these elements allowing to produce increasingly compact,
lightweight and efficient engines that reduce fuel consumption.

Despite its advantages, the design and mechanical analysis using these materials is not a simple
task on account of they have a non-linear and time dependent mechanical behavior. In adittion, they
undergo softening and they are quasi-incompressible [7]. This makes that simulations with linear
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elastic models have not precise agreement with the real behavior and unsatisfactory results are
obtained. Those inaccurate results do not guarantee the correct functionality of a particular design.

This paper presents a search for a hyperelastic model that can reproduce as accurately as
possible the mechanical behavior of a material of this type. The chosen material is Santoprene 101-73
manufactured by the ExxonMobil [8] and used to make air intake tubes in automotive engines.

The main objective is to simulate the mechanical behavior of the material, theoretically and
practically, under large deformations. To perform this, a study of six widely referenced hyperelastic
models in the literature is performed:

¢  Neo Hookean
¢  Mooney-Rivlin
e Ogden

¢  Gent-Thomas

e  Arruda-Boyce
e Yeoh

From the formulation of strain energy density function of each of models, an analytical
development for calculating stresses in the uniaxial case will be made. The parameters of each of
models will be obtained by a least squares fit algortihm. The results will be compared with the test
provided by the manufacturer. The correlation coefficient R? will be used to know which model best
represents the actual mechanical behavior of the material.

2. Material

The nonlinear behavior of the material has been described by uniaxial tensile tests on sample
parts produced by the manufacturer. The datasheet of material describes the mechanical behavior
for axial tension, biaxial tension and compression. Furthermore, information on the cyclic behavior
of the material is also provided at different levels of deformation.

From the information on the cyclical behavior of the material, the material behavior to the first
pull deformation can be obtained. This behavior is shown by a solid red line in Figure 1.

In order to obtain values of strain energy density, stress values from the first pull deformation
has been obtained. Strain energy density values were obtained by Equation (1) and are shown in
Table 1.
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Figure 1. Strain-stress plot of Santoprene 101-73 from manufacturer datasheet [8].

Table 1. Strain, stress, strain energy density data of Santoprene 101-73 from manufacturer datasheet.

Strain (%) Stress (Mpa) W(SED) Strain (%) Stress (Mpa)  W(SED)
0,000 0,000 0,000 22,987 2,374 0,366
0,935 0,345 0,002 24,211 2,422 0,396
1,992 0,615 0,006 24,963 2,451 0,414
3,240 0,859 0,015 28,425 2,585 0,501
4,657 1,084 0,029 29,876 2,631 0,539
6,868 1,338 0,056 33,938 2,768 0,648
8,704 1,516 0,082 35,879 2,819 0,702
9,896 1,623 0,101 37,772 2,869 0,756
12,187 1,792 0,140 39,748 2,905 0,813
13,778 1,913 0,170 45,436 3,079 0,982
14,950 1,981 0,192 47,482 3,112 1,046
17,629 2,122 0,246 48,864 3,136 1,089
18,941 2,193 0,274 49,860 3,149 1,120
19,903 2,232 0,296

3. Basics of continuum mechanics

Normally, hyperelastic models are characterized by strain energy function density W which is
formulated as a function depending on different magnitudes associated to the strain field and the
material constants. Usually:
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where 14,4,,1; are principal stretches, and I;,1,,I; are the invariants of left Cauchy-Green strain
tensor, B, respectively, obtained as:

I, = trace (B) (3)

L=2 (2B B) )
2

I; = det (B) ®)

Stress-strain relations are derived by differentiating the strain energy density function through
the formulation described below.

If the strain energy function is defined in terms of strain invariants Iy, I, I5:
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If the strain energy function is defined in terms of the principal stretches Ay, 2;, A3:

o= Wy N Wyepe, h W, e,6 7)
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where bs, by, bs are three orthogonal unit vectors which correspond to B tensor eigenvectors and they
define the three principal directions of deformation.
4. Hyperelastic models

To obtain a constitutive model that can reproduce with the maximum possible accuracy the
behavior of the material, six classic hyperelastic models were analyzed. In this section the six models
studied (and corresponding sub-models) and their formulation are described.

4.1. Mooney-Rivlin model

Mooney-Rivlin model [9, 10], proposed in 1951, is one of the hyperelastic models most used in
the literature. Although there are various versions of this model, the most general are based on the
first and second invariants deformation. The strain energy density function is defined as follows:

W = Coll =)+ Coallz = 3) + 5.0 = 1)? ®)

where Cj are material constants, | is the determinant of the strain gradient tensor F and D is a
material constant related to the bulk modulus.

4.2. Neo-Hookean model

This model was proposed by Treloar in 1943 [11], and it is a particular case of two parameters
Mooney-Rivlin model. In this model, the strain energy density function is based only on the first
strain invariant:
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W:C1(11—3)+%(]—1)2 (12)

where C1 is a material constant, | is the determinant of the strain gradient tensor F and D is a material
constant related to the bulk modulus.

4.3. Ogden model

Ogden hyperelastic model (1972) [12] is possibly the most extended model after Mooney-Rivlin
model. This model is based on the three principal stretches (A1, A2, As) and 2-N material constants,
where N is the number of polynomials that constitute the strain energy density function, defined as:

N

i=1
where pi y ai are material constants, | is the determinant of the strain gradient tensor F and D is a
material constant related to the bulk modulus.
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4.4. Gent-Thomas model

Gent-Thomas model [13] is a hyperelastic constitutive model that uses three material constants.
It is based on the first and second strain invariants. The strain energy density function is defined as
follows:

1
W = Gyl = 3) + 3CIn(1) + 5 Al(n)? + ( — 1)?] (14)
where Ci, C2 and A are material constants, and ] is the determinant of the strain gradient tensor F.

4.5. Yeoh model

The model proposed in 1990 by Yeoh [14], is based on the first strain invariant. The strain
energy density function is defined as follows:

N e i Nl _ 15
W—;Cw(ll 3)+;D(1 1)%k (15)

where Cio are material constants, J is the determinant of the strain gradient tensor F and D is a
material constant is related to the bulk modulus.

4.6. Arruda-Boyce model

The micromechanical model Arruda-Boyce [15] was proposed in 1993 and is a particular case of
Yeoh model with N = 5. It is based on the first strain invariant and is also known as teightchain
model. The strain energy density function is defined as follows:

W= u21212(11—3)+ []2_1 ln]] (16)

where Ci y AL are material constants, p is the initial shear modulus, ] is the determinant of the strain
gradient tensor F and D is a material constant related to the bulk modulus.

5. Model fitting

All models presented in the previous section are dependent on strain magnitudes and material
constants. To obtain the optimum values of these constants that make each of the models reproduce
faithfully the data from manufacturer, an optimization algorithm was used. The discrepancy
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between theoretical and real data has been defined as the error of the model. A least squares
algorithm was used to fit the values of material constants by minimizing the error. The error
function is defined as:

N
¢ = Erroryeger = Z(Datareal - Datamodel)2 (17

i=1

where N is the number of points on the chart provided by the manufacturer.

To determine the quality of each of the models, the R? correlation coefficient was calculated.

As a result of the models, a strain energy density curve and a stress-strain curve were obtained.
This stress-strain curve will be compared with the actual material curve. The best hyperelastic model
will be the one whose average values R? (strain energy density and stress) is closer to 1.

6. Results

In this section, the results obtained for each of the models (and sub-models) are presented. The
strain energy density function curves and stress-strain curves are shown in Fig. 2 to 7.
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Figure 2. Mooney Rivlin model. (a) Strain-Strain energy density plot; (b) Strain-stress plot.
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Figure 3. Neo Hookean model (a) Strain-Strain energy density plot; (b) Strain-stress plot.
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Figure 4. Ogden model. N=3 submodel. (a) Strain-Strain energy density plot; (b) Strain-stress plot.
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Figure 5. Gent-Thomas model. (a) Strain-Strain energy density plot; (b) Strain-stress
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Figure 6. Yeoh model. N=3 submodel. (a) Strain-Strain energy density plot; (b) Strain-stress
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Figure 7. Arruda-Boyce model. N=1 submodel. (a) Strain-Strain energy density plot; (b) Strain-stress

The values of the material constants are shown for each of the different models studied in
Tables 2 to 7. Furthermore the value of R? coefficient for strain energy density function and stress is
shown.

Table 2. Mooney Rivlin model. 2 parameters submodel. Material parameters value and R?
coefficient for e-W and e-o plots.

Material
Model Value Rz (W) R2 (o)
parameter
Mooney-Rivlin Cuo -3,0670
0,9994 0,9572
2 par. Con 6,5250

Table 3. Neo Hookean model. Material parameters value and R? coefficient for e-W and ¢-o plots.

Material
Model Value R2(W) R2(0)
parameter
Neo Hookean Cao 2,0790 0,9893 0,9246
Table 4. Ogden model. N=3 submodel. Material parameters value and R? coefficient for e-W and e-o
plots.
Material Val R:(W) R (0)
alue o
Model parameter
[VE -3,0800
a1 4,7360
u2 4,0040
Ogden N=3 0,9985 0,8704
o2 3,4520
us 9,5680
a3 1,3090

Table 5. Gent-Thomas model. Material parameters value and R? coefficient for e-W and e-o plots.

Material
Model Value R2(W) R2(0)
parameter
Ci 1,9130
Gent-Thomas 0,9894 0,9251

C2 0,0173




Table 6. Yeoh model. N=3 submodel. Material parameters value and R? coefficient for e-W and e-o

plots.
Material
Model parameter Value R2(W) R2(0)
Cuo 3,2000
Yeoh N=3 Cx -4,2630  0,9996 0,9465
Cao 3,6230

Table 7. Arruda-Boyce model. N=1 submodel. Material parameters value and R? coefficient for e-W

and e-o plots.

Material
Model Value R2(W) R2(0)
parameter
1,5625
Arruda-Boyce
Nel ALt 1,8000  0,9893 0,9246
C 1,3306

7. Discussion

90f17

The results show that the mechanical behavior of Santoprene 101-73 can be adjusted precisely

using different models of hyperelastic behavior, because all models provide a good correlation with
the data supplied by the manufacturer.

Figure 17 shows that all hyperelastic models analyzed work relatively well because R2> 0.90 in
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Figure 8. Average R2(W) and R2(co) values of hyperelastic models and submodels.

all cases. However, the Mooney-Rivlin hyperelastic model is the most capable model to reproduce
the real behavior of the material. This model shows the highest correlation on strain energy density
(0,9994) and stresses (0,9572).
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Neo Hookean model is a particular case of Yeoh model with N =1, with equivalent formulation,
and therefore the results for both models are identical.

Attending to the stress results obtained, the importance of this kind of studies can be
highlighted to perform mechanical simulations. Despite achieving R? values close to 1 in stress data
results, the values of these stress in each model can be quite different from the actual values of the
material obtained by experimental tests. These stress values will lead, in each section of the
component, to resultant forces and moments quite different from the actual ones. It could, in some
cases, cause problems in mounting and assembly phases of the designed parts.

8. Conclusions

The aim of this paper was to determine which is the best theoretical model for reproducing the
mechanical behavior of Santoprene 101-73 material used in automotive industry. To reach it, 6
different hyperelastic models with their corresponding sub-models have been studied in order to
obtain the material constants of each of them. The description of 15 hyperelastic formulations
(models and submodels) have been made. An optimization least squares algorithm were used to fit
the best values of material constants to each of them. In order to conclude which of them best
represents the actual behavior of the material, the R? correlation coefficient for two variables (strain
energy density function and stress) has been used.

In view of the obtained results, it can be concluded that the Mooney-Rivlin model is the most
accurate model to reproduce the mechanical behavior of Santoprene 101-73, being the 5 parameters
submodel which provides the best results.
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