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1. A manifold of equilibrium states

Application of differential geometry to thermodynamics initiated by

Weinhold (1975)

Metric space (Hilbert space) spanned by extensive variables Xi

such as internal energy, total magnetization, number of particles, ...

Present work: uses canonical ensemble of statistical mechanics.

Relevant potential: Φ = log Z , (Z is the partition sum)

instead of energy, entropy, free energy, ...

Scalar product defines metric tensor g: gij = 〈Xi ,Xj〉.

Ruppeiner (1979)

The metric tensor g is determined by fluctuations + correlations.

Riemannian curvature, determined by g, implies interactions.

No curvature for the ideal gas model.
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Boltzmann-Gibbs distribution

p(x) =
1

Z
e−β[H(x)−hM(x)]

H(x) is Hamiltonian, M(x) is total magnetization

β is inverse temperature, h is external magnetic field

Z = Z (β, h) the normalization.

Statistics: the BG distribution belongs to the exponential family

because it can be written into the form

pθ(x) = exp(θk Fk (x)− Φ(θ)).

θ1 = −β, F1(x) = −H(x), θ2 = βh, F2(x) = M(x), Φ(θ) = log Z (β, h).

Derivatives of Φ(θ) yield expectation values: ∂kΦ(θ) = 〈Fk 〉θ.
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The pθ(x) form a differentiable manifold M.

The variables Xk with Xk = Fk − 〈Fk 〉θ
span a tangent plane.

The obvious scalar product is

〈U,V 〉θ =
∫

dx pθ(x)U(x)V (x).

The metric tensor g is given by
gij(θ) = 〈Xi ,Xj 〉.

The Christoffel symbols are defined by

Γk
ij =

1

2
gks (∂igsj + ∂jgis − ∂sgij) ,

They determine the Riemannian curvature of the manifold.
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2. Dually flat geometries

Geometry: metric tensor g(θ) plus geodesics

Geodesics are solutions of Euler-Lagrange eq. θ̈k + ωk
ij θ̇

i θ̇j = 0.

The coefficients ωk
ij determine the connection.

Riemannian curvature : Levi-Civita connection : ω = Γ

(Amari 1985) A model belonging to the exponential family

has dually flat geometries ω = 0 and ω = 2Γ.

Duality of connections is related to

the duality known from thermodynamics.

Replacing ’acceleration’ Γ by 2Γ removes any curvature.

This holds when using the canonical coordinates θk of the
exponential family.
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Thermodynamic duality: two potentials S(U) and Φ(β) satisfy

dS

dU
= β and

dΦ

dβ
= −U.

Entropy S(U) is the Legendre transform of Φ(β) (Massieu 1869).

Several variables:
ηi and θj are dual coordinates:

ηi =
∂Φ

∂θi
= 〈Fi〉θ and θj = −∂S

∂ηj

.

Φ(θ) and S(η) are dual potentials:

Φ(θ) = sup
η

{S(η) + θkηk}, and S(η) = inf
θ
{Φ(θ)− θkηk}.
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3. Thermodynamic length

Geodesics for ω = 0: θk (t) = (1 − t)θk (t = 0) + tθk (t = 1).

Geodesics for ω = 2Γ: θk (t) = θk [(1 − t)η(t = 0) + tη(t = 1)],
with θ[η] inverse function of η(θ).

Thermodynamic length: integrate ds =
√

gijθiθj along geodesic.

Easy calculation when coordinates known in which the geodesic is a
straight line.
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4. The ideal gas

Probability density for x in n-particle phase space

f (x , n) =
1

Z
e−β(Hn(x)−µn).

β is inverse temperature, µ is chemical potential,

Hn is Hamiltonian for n free particles, enclosed in volume V .

Let θ1 = β/β0, θ2 = βµ, F1(x , n) = −Hn(x), F2(x , n) = n.
⇒ ideal gas model belongs to the exponential family.

Calculations ⇒ Φ(β, µ) = log Z = V
V0

eβµ
(

β0

β

)3/2

,

with numerical constants V0, β0.

⇒ N ≡ 〈n〉 = Φ(β, µ)
⇒ ideal gas law βpV = N where p is pressure.
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⇒ η1 = − 3
2θ1 Φ and η2 = Φ.

⇒ g(θ) = 1
θ1 Φ

(

15
4θ1 − 3

2

− 3
2

θ1

)

.

⇒ Christoffel symbols:

Γ1 =

(

−5/2θ1 1/2

1/2 0

)

and Γ2 =

(

−15/8[θ1]2 0

0 1/2

)

.

⇒ Riemannian curvature vanishes.
Tedious calculation.
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Example of ω = 0 geodesic:
isotherm: β is kept constant, µ varies linearly.

Thermodynamic length = 2|
√

N(2) −
√

N(1)|
Example of ω = 2Γ geodesic:

pV is kept constant, N varies linearly.
Thermodynamic length proportional to change in N.
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5. Conclusions

Application of differential geometry to thermodynamics is considered

here for models belonging to the exponential family.

Amari’s dually flat geometries are also meaningful in a
thermodynamical context.

Future work: application to models of interacting particles.
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