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1. ABSTRACT

A methodology for the direct preparation of dihydrocyclopenta[bJindoles from indole-tethered a-
hydroxacrylates under gold catalysis has been developed. The newly formed five-membered ring

arises from a selective indole hydroarylation followed by dehydration.

2. INTRODUCTION

The use of gold salts has gained a lot of attention in the recent times because of their powerful
soft Lewis acidic nature. Such a property allows gold catalysts to activate unsaturated
functionalities such as alkynes, alkenes, and allenes, to create C—C bonds under extremely mild
conditions." On the other hand, Baylis-Hillman (BH) adducts are usually flexible and
multifunctional products which can be easily transformed in a huge number of derivatives.’
However, although many efforts have been made in these fields, the gold-catalyzed reactions using
BH adducts derived from formyl-indoles as substrates constitute an unexplored field of noble metal
catalysis. In connection with our current research interest in metal-catalyzed reactions,” we wish to
report now details of the cyclization of indole-tethered BH adducts to cyclopenta[b]indoles,4 which

is carried out using gold catalysis.
3. RESULTS AND DISCUSSION

Starting substrates, BH adducts 1a—c, 2a, and 2b (Figure 1) required for our study were prepared
through a DABCO-catalyzed reaction from methyl acrylate and the appropriate indole-

carbaldehydes.” Indole-linked acrylate 1a was synthesized according to a literature procedure.’®
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Novel BH adducts 1b, 1c, 2a, and 2b were prepared using the above standard procedure with slight

modifications.
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Figure 1. Structures of cyclization precursors, Baylis—Hillman adducts la—c, 2a, and 2b. SO,py = (2-pyridyl)sulfonyl.

Initially, we started to evaluate the cyclization reaction by employing BH adduct 1a as model
substrate. NH-Indole-tethered a-hydroxacrylate 1a has diverse reactive sites, at which at least three
different transformations (C-cyclization versus O-cyclization versus N-cyclization) can take place.
Our catalyst screening led to the identification of AuCls as the most suitable promoter. AuCl and
Gagosz’ catalyst [(Ph3P)AuNTf,] were less effective for the tricycle formation. Our solvent
screening led to the identification of 1,2-dichloroethane (DCE) as the most suitable solvent. It was
found that AuCl; is an effective reagent for the room temperature carbocyclization of indole-linked
acrylate la to afford the cyclopentene-fused indole 3a in 40% yield in a totally selective fashion.
Nicely, using deactivated silica gel during purification resulted in an increased 50% yield for
adduct 3a (Scheme 1). Similarly, 1,4-dihydrocyclopenta[b]indoles 3b—d were selectively obtained
in the presence of the gold salt (Scheme 1). The placement of a chlorine atom or a methoxy group
at C5 position of the indole ring was tolerated in the presence of AuCls, providing a handle for

subsequent orthogonal reactivity.
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Scheme 1. Controlled intramolecular gold-catalyzed C3-hydroarylation of alkenyl-tethered indoles 1a—d.



Due to the fact that the C3-position of an indole is the most reactive site for electrophilic

functionalization,’

carbocyclization of indole-tethered alkenes to the C2 indole position is
considerably less studied and is mainly restricted to 1,2-dienes.® Fortunately, the gold-catalyzed
reaction of indole-tethered a-hydroxacrylates 2 was also successful. As shown in Scheme 2, under

gold(II) catalysis, the C3—C2 annulation products 4 were obtained, but in modest yields.
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Scheme 2. Controlled intramolecular gold-catalyzed C2-hydroarylation of alkenyl-tethered indoles 2a and 2b.

Scheme 4 describes a putative mechanism for generating 1,4-dihydrocyclopenta[bJindoles 3 from
the carbocyclization of indole-C2-tethered a-hydroxacrylates 1. Initially, AuCls coordinates to the
alkenic double bond of BH adducts 1 to produce 1-Au. The chemo- and regioselective 5-endo
hydroarylation reaction of the thus generated gold complexes gives zwitterionic intermediates 5.
Attack at the 3-position of the indole occurs as a result of the stability of the iminium species 5. The
loss of HCI in zwitterion 5 furnishes neutral species 6, which after loss of hydroxygold(III) chloride

yields adducts 3. Protonolysis of Au(OH)Cl, releases water and eventually reforms the Au(IIl)

CO2Me
H>O

catalytic species (Scheme 3).
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Scheme 3. Mechanistic explanation for the gold-catalyzed synthesis of 1,4-dihydrocyclopenta[bJindole-2-carboxylates 3.



Our proposed mechanism for the gold-catalyzed generation of 3,4-dihydrocyclopenta[bJindole-2-
carboxylates 4 is shown in Scheme 4. It is assumed that the mechanism starts with the coordination
of the gold salt to the alkenic double bond of BH adducts 2 to give the corresponding complex 2-
Au. Then the 5-endo-trig carbocyclization towards the terminal alkene carbon takes place with
formation of zwitterion 7. This is followed by loss of HCI to produce neutral species 8. The
required fused cyclopentenes 4 are generated from 8 by dehydroxyauration. The subsequent
regeneration of the gold catalyst is facilitated by the action of HCI over Au(OH)Cl,. This step

deliberates AuCl; and water.
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Scheme 4. Mechanistic explanation for the gold-catalyzed synthesis of 3,4-dihydrocyclopenta[b]indole-2-carboxylates 4.

4. CONCLUSIONS

In conclusion, we have developed a convenient methodology for the gold-catalyzed direct
synthesis of dihydrocyclopenta[b]indoles from Baylis—Hillman adducts derived from formyl-
indoles. A conceivable mechanism for the achievement of cyclopentene-fused indoles may imply a

selective indole hydroarylation followed by dehydration.
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