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ABSTRACT 

The resistance of weeds is a problem which can be overcome by finding new herbicides. For this 

purpose, beyond the experimental methods, in silico approaches can be helpful, as a starting 

point. In this regard, pharmacophore mapping and 3D-QSAR studies were carried out on several 

series of herbicide, already known to act on the Photosystem II (PS II) D1 protein. Using PHASE 

software, three pharmacophore features, H-bond acceptor (A), hydrophobic (H) and aromatic 

ring (R) were taken into account to be the best hypothesis. For this hypothesis an atom-based 

3D-QSAR model was generated with statistically significant parameters (the correlation 

coefficient of regression (R2) of 0.839, the standard error of estimates (SD) of 0.370, the Fisher 

test (F) of 53.7 for the training set, the external explained variance Q2 = 0.640, the Pearson-R = 

0.916 and Root Mean Square Error (RMSE) = 0.572, for the test set). This hypothesis, validated 

by the 3D atom-based QSAR approach, assures the selection of novel scaffolds of herbicide 

derivatives and can be used for the design of new chemical entities active on the PS II D1 

protein. 
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INTRODUCTION 

The chemical compounds utilized to control undesired plants (weeds) are named herbicides and 

they can act by inducing the various inhibition mechanisms in the plants. Photosystem II (PS II) 
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is a protein complex which is found in plants [1] and contains around 20 polypeptide chains. 

Among them, two subunits (D1 and D2), own the important redox-active cofactors. [2] The 

herbicides targeting PS II, in general, inhibit photosynthesis by binding to the D1 subunit. These 

compounds compete with the endogenous quinone (QA and QB) ligands, thus, the electron 

transport from QA to QB is blocked, CO2 fixation is stoped and the growth of plants is damaged. 

[3, 4] 

 Computational methods such as ligand-based pharmacophores and quantitative structure-

activity relationship (QSAR) are widely used in the discovery of new chemicals for 

pharmaceutical and agrochemical fields. 

 Our aim is to develop a valid pharmacophore model based on different scaffolds of PS II 

D1 herbicide derivatives (pyrimidine, pyridine, cinnoline, triazine and quinine) which further can 

be used for screening molecular databases in order to find potential new herbicides and for the 

prediction of their activity. 

 

METHODS 

Data set selection and processing 

The datasets consisting of 58 inhibitors of the D1 protein in photosystem II (PSII D1) from 

Chlamydomonas reinhardtii were collected from literature [5] and Pubchem database [6,7] 

AID1101260 and AID1101262. In case of ten compounds which show multiple experimental 

activities, we considered their average values. All structures were converted from smiles code 

into 3D structures, and ionization states and tautomers in the pH range of 6.2±0.3 were 

generated, using the LigPrep module [8] of Schrödinger suite [9]. The conformational space for 

each ligand was developed with the help of ConfGen module [10,11] using the default options. 

217 compounds resulted after conformer generation and energy minimization based on the 

OPLS-2005 force field.  

The pharmacophore hypotheses were generated using eight most active (with pIC50>7) 

compounds, while the threshold for inactivity was set to 5 using the Phase module [12-14] of 

Schrödinger suite [9]. 
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Table 1. The structure of the most active compounds (1 to 8), the unaligned ligands (9 and 10) 

and the less active compounds (11 and 12) and their herbicidal activity in logarithmic units 

(pIC50)  

No Structure pIC50 No Structure pIC50 

1 

 
7-bromo-3-phenyl-triazolo[1,5-

a]pyridine 

7.620 7 

 
6-bromo-7-(1,1-

dimethylpropyl)pyrido[1,2-

a]benzimidazole-8,9-dione 

7.050 

 

2 

 
6-bromo-7-isopropyl-pyrido[1,2-

a]benzimidazole-8,9-dione 

7.510 

 

8 

 
7-chloro-3-phenyl-triazolo[1,5-

a]pyridine 

7.022 

 

3 

 
bromo-7-tert-butyl-pyrido[1,2-

a]benzimidazole-8,9-dione 

7.470 

 

9 
N

N

N
N

N

 
1,1-dimethyl-2-(3-
phenyltriazolo[1,5-a]pyridin-7-
yl)hydrazine 

6.328 

4 

 
6-bromo-7-(1-

ethylpropyl)pyrido[1,2-

a]benzimidazole-8,9-dione 

7.190 

 

10 

N

N

 
8-methyl-3-phenyl-imidazo[1,2-
a]pyridine 

6.215 

5 

N

NN

Br

 
7-bromo-3-(p-tolyl)triazolo[1,5-

a]pyridine 

7.187 

 

11 
N

N N

N

N

 
 

N-tert-butyl-6-methyl-
[1,2,4]triazolo[1,5-a]pyrimidin-2-
amine 

4.208 
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6 

 
7-bromo-3-(4-

phenoxyphenyl)triazolo[1,5-

a]pyridine 

7.071 

 

12 
N

NN

NN

O

Cl
 

N2-tert-butyl-6-chloro-N4-[(4-
methoxyphenyl)methyl]-1,3,5-
triazine-2,4-diamine 

4.237 

 

 

Pharmacophore modeling and validation 

The “Develop Pharmacophore Model” module of Phase software [12-14] implemented in the 

Schrödinger suite was used in order to generate all possible pharmacophore hypothesis using 

four PLS factors. The number of PLS factors was increased, but the model statistics or predictive 

ability did not improve. 

 The pharmacophore validation was carried out by atom-based 3D-QSAR regression 

including both internal and external validation. The training set includes 80% randomly selected 

molecules, whereas the remaining 20% were denominated to validate the model (test set). The 

external predictive ability for the test set prediction using Pearson-R was considered and the 

models which have values greater than 0.6 were selected. 

 Taking into account this statistical parameter but also high value of Q2 test (correlation 

coefficient of prediction for the test set) and R2 training (correlation coefficient for the training 

set) we selected the best QSAR model. 

The statistical parameters were calculated based on the following equations (see Phase user 

manual):   

For the training set: 

(i) Standard deviation of regression 

2df
sseSD           (1) 

where: sse  is sum of squares errors and 2df is the degree of freedom of  data. 

             



n

i

ii yysse
1

2
ˆ  ;  

            iŷ = predicted activity for the training set molecule i; 
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            iy = observed activity for the training set molecule i;  

            22  mndf  ( n  – the number of molecule in the training set, and m – the number of 

            PLS factors in the models)   

(ii) The coefficient of determination 

2

2

2 1
y

errR



           (2) 

where: 
n

sse
err 
2  , err  = variance in errors;  

             



n

i

iy yy
n 1

22 1
 , y = variance in observed activities;  

            y = mean observed activity 

 

(iii) Fischer test 

2

1

df
sse

df
ssy

F            (3) 

 

where:  



n

i

i yyssy
1

2
ˆ ;  

           ssy - the variance in model;  

            11  mdf , 1df - degrees of freedom in model 

 

(iv) P - statistical significance; probability that correlation could occur by chance. 

),,(
12

2
21

Fdfdf

df
dfdfBP


                     (4) 

 

For the test set: 

(v) Root-mean-square error  

 



Tj

jj

T

yy
n

RMSE
2

ˆ
1

        (5) 

where: jy  observed activity for molecule Tj ;  
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          jŷ - predicted activity for molecule Tj ;  

          T - test set of molecules;  

          Tn - number of molecules in T  

(vi) Coefficient for the predicted activities, analogous to R2, but based on the test set predictions 

)(22 TRQ            (6) 

(vii)  Pearson-R correlation coefficient 

  

 













Tj

jTj

Tj

TjTj

yyyy

yyyy

r
22 ˆ)(

ˆ

        (7) 

where: Ty  represents the mean observed activity of the test compounds; 

            Tŷ - mean calculated activity of the test compounds.  

 

RESULTS AND DISCUSSIONS 

Ten pharmacophore (Table 2) hypotheses based on different scaffolds of PSII D1 herbicide 

derivatives were generated using three minimum sites: H-bond acceptor (A), hydrophobic (H) 

and aromatic ring (R). The selected hypothesis AHR.7 (Figure 1) was used for the generation of 

the 3D QSAR model using four PLS factors. This model was built using the PHASE descriptors 

as independent variables and the herbicidal activity values (expressed as pIC50 values), as 

dependent variables. Two unaligned ligands (compound no 9 and no 10) of AHR.7 hypothesis, 

were excluded as outlier, see Table 1. 
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Figure 1. The pharmacophore hypothesis AHR.7 (acceptor (A1, pink), hydrophobic (H6, green), 

ring (R8, orange)) aligned to the compound 2 with best Fitness score = 3 

Table 2. The statistical parameters obtained for the QSAR models 

Model # SD* R2* F* P* Stability$ RMSE# Q2# r# 

AHR.3 

1 

2 

3 

4 

0.596 

0.452 

0.361 

0.241 

0.534 

0.740 

0.840 

0.931 

37.900 

45.500 

54.200 

100.500 

6.14E-07 

4.37E-10 

1.97E-12 

6.30E-17 

0.817 

0.596 

0.364 

0.237 

0.627 

0.511 

0.510 

0.470 

0.455 

0.639 

0.640 

0.694 

0.710 

0.814 

0.802 

0.834 

AHR.4 

1 

2 

3 

4 

0.598 

0.456 

0.372 

0.261 

0.531 

0.736 

0.830 

0.919 

37.400 

44.500 

50.300 

84.700 

6.90E-07 

5.72E-10 

5.13E-12 

6.63E-16 

0.809 

0.602 

0.394 

0.225 

0.578 

0.559 

0.645 

0.629 

0.538 

0.568 

0.424 

0.453 

0.778 

0.757 

0.658 

0.677 

AHR.2 

1 

2 

3 

4 

0.644 

0.386 

0.325 

0.258 

0.442 

0.806 

0.866 

0.919 

26.900 

68.500 

69.200 

87.500 

9.91E-06 

1.78E-12 

4.46E-14 

1.98E-16 

0.926 

0.672 

0.618 

0.556 

0.506 

0.489 

0.594 

0.570 

0.646 

0.669 

0.512 

0.550 

0.876 

0.847 

0.728 

0.756 

AHR.12 

1 

2 

3 

4 

0.633 

0.511 

0.465 

0.376 

0.496 

0.678 

0.740 

0.834 

43.300 

45.300 

39.900 

51.500 

4.70E-08 

2.61E-11 

2.35E-12 

1.88E-15 

0.851 

0.669 

0.571 

0.414 

0.652 

0.590 

0.644 

0.636 

0.532 

0.617 

0.544 

0.555 

0.767 

0.817 

0.779 

0.808 

AHR.14 

1 

2 

3 

4 

0.545 

0.431 

0.341 

0.297 

0.610 

0.764 

0.857 

0.895 

51.700 

51.800 

61.700 

64.000 

3.05E-08 

9.16E-11 

3.56E-13 

2.95E-14 

0.846 

0.743 

0.616 

0.515 

0.495 

0.629 

0.567 

0.552 

0.694 

0.507 

0.599 

0.620 

0.842 

0.722 

0.786 

0.795 
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AHR.7 

1 

2 

3 

4 

0.659 

0.507 

0.428 

0.370 

0.454 

0.683 

0.780 

0.840 

36.500 

46.400 

49.700 

53.700 

2.93E-07 

1.82E-11 

7.18E-14 

9.03E-16 

0.760 

0.606 

0.572 

0.523 

0.657 

0.484 

0.574 

0.572 

0.525 

0.743 

0.637 

0.640 

0.742 

0.889 

0.860 

0.916 

AHR.6 

1 

2 

3 

4 

0.681 

0.505 

0.433 

0.337 

0.417 

0.686 

0.775 

0.867 

31.500 

47.000 

48.200 

66.800 

1.27E-06 

1.52E-11 

1.16E-13 

2.07E-17 

0.888 

0.693 

0.663 

0.533 

0.556 

0.546 

0.546 

0.650 

0.627 

0.640 

0.640 

0.490 

0.897 

0.855 

0.835 

0.717 

AHR.11 

1 

2 

3 

4 

0.597 

0.462 

0.348 

0.276 

0.513 

0.716 

0.844 

0.905 

36.800 

42.900 

59.300 

75.900 

6.26E-07 

5.08E-10 

2.19E-13 

7.26E-16 

0.872 

0.765 

0.577 

0.419 

0.642 

0.581 

0.700 

0.723 

0.430 

0.532 

0.322 

0.276 

0.661 

0.734 

0.605 

0.552 

AHR.9 

1 

2 

3 

4 

0.634 

0.480 

0.389 

0.264 

0.449 

0.694 

0.805 

0.913 

28.500 

38.500 

45.400 

84.000 

5.71E-06 

1.86E-09 

8.29E-12 

1.67E-16 

0.942 

0.907 

0.888 

0.745 

0.715 

0.547 

0.717 

0.662 

0.362 

0.627 

0.360 

0.453 

0.637 

0.826 

0.657 

0.718 

AHR.5 

1 

2 

3 

4 

0.752 

0.585 

0.487 

0.389 

0.288 

0.580 

0.715 

0.822 

17.800 

29.600 

35.100 

47.400 

0.000122 

8.16E-09 

1.65E-11 

7.47E-15 

0.976 

0.873 

0.786 

0.612 

0.731 

0.512 

0.642 

0.643 

0.355 

0.684 

0.503 

0.501 

0.622 

0.838 

0.711 

0.712 

# Number of factors in the partial least squares regression model; SD - standard deviation of the 

regression; R2 - the coefficient of determination; F - the ratio of the model variance to the 

observed activity variance; P - the significance level of variance ratio; Stability – the stability of 

the model predictions; RMSE – the root-mean-square error in the test set predictions; Q2 - value 

for the predicted activities, analogous to R2, but based on the test set predictions; r (Pearson-R) - 

value for the correlation between the predicted and observed activity for the test set (see equation 

7); *for the training set; $ for the entire data set; # for the test set. 

 

The value of correlation coefficient for the training set (R2) is higher than 0.8 and indicate 

a good correlation between the independent versus dependent variables. The predictive capacity 

of the QSAR model is satisfactory, from the values of the correlation coefficient for the test set 

(Q2 > 0.6) and of the Pearson’s R (> 0.9). The statistical results for the test set proved that 

QSAR model is stable and predictive. The plot of observed versus predicted herbicidal activities 

for the training and test sets achieved for the 3D QSAR model of AHR.7 hypothesis is 

represented in Figure 2. 
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Figure 2. The plot of observed versus predicted herbicidal activities for the model with the 

pharmacophore AHR.7 hypothesis 

 

Further understanding of the inhibitory activity of the PSII D1 protein can be achieved by 

mapping the 3D QSAR model over the ligands from the dataset series [5, 7]. A graphical 

representation of the significant favourable and unfavourable features for the herbicidal activity 

of the compounds that resulted when the QSAR model is applied is presented in Figures 3 to 6. 

In these pictures, the blue cubes show favorable regions, while red cubes indicate unfavorable 

regions for the herbicidal activity, regarding to following combined features:  hydrogen bond 

donor, hydrophibic/ non-polar, electron-withdrawing and positive ionic. 
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Figure 3. The QSAR model visualized in the context of the best aligned  compound (no 2) with 

AHR.7 

 

 
Figure 4. The QSAR model visualized in the context of the most active compound (no 3) of the 

test set 
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Figure 5. The QSAR model visualized in the context of the less active compound  (no 11) of the 

training set 

 

Figure 6. The QSAR model visualized in the context of the less active compound  (no 12) of the 

test set 
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In Figures 3 and 4 the active herbicide derivatives presents a superior number of blue 

cubes and a lower number of red cubes, in comparison with the less active ligands from Figures 

5 and 6. 

 

 

CONCLUSIONS 

Pharmacophore-based 3D-QSAR study of PSII D1 inhibitors is carried out in order to explain the 

structural features of some herbicide derivatives (pyrimidine, pyridine, cinnoline, triazine and 

quinine) required for their inhibitory activity. The selected 3D-QSAR model indicates a 

significant correlation and a good predictive capacity. One hydrogen bond acceptors (A), one 

lipophilic/hydrophobic group (H) and one aromatic ring (R), as pharmacophore features, are 

important for the PSII D1 herbicidal activity. The best hypothesis AHR.7, in this study, is 

characterized by the best values of the R2 regression coefficient (0.839) and the highest values 

for the Pearson-R coefficient (0.916).  In future studies this pharmacophore model will be used 

for screening molecular databases in order to find potential new herbicides. 
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