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ABSTRACT 

The work reports synthesis of 15 novel 3-((dicyclohexylamino)(substituted 

phenyl/heteryl)methyl)-4-hydroxy-2H-chromen-2-one derivatives 4 (a-o) as potential 

antimicrobial agents in solvent-free condition using Triethyl ammonium sulphate 

[Et3NH][HSO4] as an efficient, eco-friendly and reusable catalyst. Compared to other methods, 

this new method consistently has advantages, including excellent yields, a short reaction time, 

mild reaction conditions and catalyst reusability. The heterocyclic compound Coumarin, is 

associated with diverse biological activities of immense importance. Due to the presence of 

coumarin moiety in various pharmaceutically active compounds, we planned the green synthesis 

of a series of 15 novel compounds containing coumarin moiety coupled with dicyclohexyl rings 

by an eco-friendly ionic-liquid mediated protocol at room temperature by stirring. The structures 

of the synthesized compounds were confirmed by spectral characterization such as IR, 1H NMR, 

13CNMR and Mass spectral studies. All the synthesized compounds 4 (a-o) were evaluated for 

anti-fungal and antibacterial activities and have exhibited promising antimicrobial activity. 

Keywords: Triethyl ammonium sulphate, Coumarin, anti-fungal activity, antibacterial activity. 
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1. INTRODUCTION 

Many drug-resistant human pathogenic microbes have been observed in the past few decades 

[1] and it is serious public health problem in a wide range of infectious disease [2,3]. These 

resistant pathogenic microbes’ strains cause failure in antimicrobial treatment and enhance the 

mortality risks, and sometimes contribute to complications. To overcome this problem the best 

way is the development of new bioactive compounds effective against resistant strains is highly 

needed. In spite of a large number of antibiotics and chemotherapeutics available for medical 

use, antimicrobial resistance created substantial medical need for new classes of antimicrobial 

agents. Design and synthesis of newer antimicrobials will always remain an area of immense 

significance [4-5]. The novel and potent antimicrobial agents can be obtained by modifying the 

structure of a well known antimicrobial agent or the second strategy is to combine together two 

or more different antimicrobial pharmacophores in one molecule.  

Coumarin derivatives are an important class of natural, synthetic compounds and 

pharmacologically active substances displaying a broad range of biological activities including 

cytotoxicity [6], antioxidant [7], antiplasmodial [8], antimalarial [9], antirhinovirus [10], 

antifungal [11] and antibacterial [12].  

The Mannich reaction is one of the most important carbon-carbon bond forming reactions 

in organic synthesis because of its atom economy and potential application in the synthesis of 

biologically active molecules. In this reaction, an amine, two carbonyl compounds, and acid (or 

base) catalysts are used to produce β-amino carbonyl compounds, which constitute various 

pharmaceuticals, natural products and versatile synthetic intermediates [13,14]. Conventional 

catalyst of the classic Mannich reaction involves inorganic and organic acids like HCl [15], 

proline [16], p-dodecybenzenesulfonic acid [17]. Reaction using these catalysts, however, often 

suffers drawbacks including long reaction times, harsh reaction condition, and difficult product 

separation. 

Considering the focus on green synthesis in recent years, ionic liquid have attracted attention 

many of researchers. Ionic liquid have been referred as “designer solvents/ green solvents” 

because their physical and chemical properties can be adjusted by varying the cation and anion. 

Mannich reaction have been performed using various ionic liquid such as [BMIM][PF6] [18], 

[emim][OTf] [19], [CMMIM][BF 4] [20], [Hmim][PF6] [21] and some other bronsted ionic 
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liquids (22-23). Although extensive work has been done in this area, the disadvantage of the 

above mentioned catalytic systems, are large amount of catalyst required, the necessity of an 

organic co-solvent, cost, the ionic liquids contain halogen, which in some ways, limits their 

“greenness”. Thus synthesizing halogen free, water soluble, economic, reusable and easy to 

prepare ionic liquid was the main aim of our research team. Taking in consideration the above 

mentioned points we have carried out the synthesis of coumarin-dicyclohexyl coupled hybrid 

derivatives 4(a-o) using [Et3NH][HSO4] as an solvent and easily recoverable green catalyst 

(Scheme 1). 

All the synthesized compounds 4(a-o) were screened for in vitro antifungal and 

antibacterial activity.  Minimum inhibitory concentration (MIC) values were determined using 

the standard agar method as per CLSI guidelines [24-27]. 

2. RESULTS AND DISCUSSION 

2.1 Chemistry: 

Herein we report the one-pot synthesis of 15 novel 3-((dicyclohexylamino)(substituted 

phenyl/heteryl)methyl)-4-hydroxy-2H-chromen-2-one derivatives 4 (a-o) from three component 

reactions of an suitable aldehydes (1), dicyclohexylamine (2) and 4-hydroxy coumarin (3) in 

presence of [Et3NH][HSO4] as an solvent and catalyst as shown in Scheme 1. 

Scheme 1. One-Pot, three component synthesis of novel 3-((dicyclohexylamino)(substituted 

phenyl/heteryl)methyl)-4-hydroxy-2H-chromen-2-one derivatives 4 (a-o) 

In search of an efficient catalyst and the best experimental reaction conditions, the 

reaction of benzaldehyde (1a), dicyclohexylamine (2) and 4-hydroxy coumarin (3) at room 

temperature was considered as a standard model reaction to obtain 4a.  

Initially, the reaction was carried out in the absence of the catalyst; the product formed in 

a trace/negligible amount Table 1, entry 1. To determine the appropriate concentration of the 

catalyst [Et3NH][HSO4], we investigated the model reaction at different concentrations of 
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[Et3NH][HSO4], such as 5, 10, 15, 20 and 25 mol%. The product 4a formed in 72, 85, 90, 92 and 

92 % yields, respectively. 

Table 1 Effect of [Et3NH][HSO4] catalyst concentration on model reaction 4a 

Entry  [Et3NH][HSO4] mol% Time (min) Yield (%) 
1. No catalyst 90 Trace 
2. 5 85 72 
3. 10 60 85 
4. 15 50 90 
5. 20 30 92 
6. 25 30 92 

 

The increase in concentration of catalyst from 20 to 25 mol% does not increase the yield 

of product. This indicates that 20 mol% of [Et3NH][HSO4] is sufficient for the reaction by 

considering the product yield. 

The re-usability of the ionic liquid [Et3NH][HSO4] was also studied and the results 

obtained are as shown in Table 3. After the completion of the reaction, the reaction mixture was 

quenched with ice crystals and filtered recrystallized using ethanol. The residual ionic liquid was 

washed with diethyl ether, dried under vacuum at 60 0C and reused for subsequent reactions. The 

recovered ionic liquid could be used for five times without obvious loss of catalytic activity. 

Table 3 Reusability of [Et3NH][HSO4] catalyst for model reaction 4a 

Entry  Run Time Yield 
1. 1 30 92 
2. 2 30 92 
3. 3 30 90 
4. 4 30 88 
5. 5 30 88 

 

With these optimized reaction conditions for the model reaction 4a, i.e. 20 mol% 

[Et3NH][HSO4] catalyst, room temperature and solvent-free conditions, we have synthesized 15 

novel 3-((dicyclohexylamino)(substituted phenyl/heteryl)methyl)-4-hydroxy-2H-chromen-2-one 

derivatives 4 (a-o). The physical characterization data of the synthesized compounds 4 (a-o) are 

as  shown in  Table 4 All the synthesized compounds were characterized by 1H-NMR, 13C-NMR, 

mass spectroscopy and IR. 
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Table 4 Physical characterization of synthesized compounds 4 (a-o). 

Compound R Molecular 
weight 

Molecular 
formula 

Melting point 
0C 

Yield
% 

4a Phenyl 431.25 C28H33NO3 112-114 92 
4b 4-chlorophenyl 465.21 C28H32ClNO3 120-122 95 
4c 2,6-dichlorophenyl 500.17 C28H31Cl2NO3 126-128 90 

4d 4-flurophenyl 449.56 C28H32FNO3 122-124 92 
4e 2,4-diflurophenyl 467.55 C28H31F2NO3 122-124 89 
4f 4-methoxyphenyl 461.59 C29H35NO4 133-135 86 
4g 3,4 dimethoxyphenyl 491.62 C30H37NO5 138-140 84 
4h 3,4,5 trimethoxyphenyl 521.64 C31H39NO6 136-138 82 

4i 4-hydroxyphenyl 447.57 C28H33NO4 128-130 90 
4j 2-hydroxyphenyl 447.57 C28H33NO4 130-132 88 
4k 4-hydroxy-3-methoxyphenyl 477.59 C29H35NO5 144-146 86 

4l 4-hydroxy-3-ethoxyphenyl 491.27 C30H37NO5 140-142 86 
4m Pyridine-2-yl 432.55 C27H32N2O3 148-150 84 
4n Thiophene-2-yl 437.59 C26H31NO3S 140-142 88 
4o Furan-2-yl 421.53 C26H31NO4 148-150 86 

 

2.2 In-vitro antifungal activity 

The newly synthesized compounds 4(a–o) were screened for in vitro antifungal activity 

against different yeast and filamentous fungal pathogens.  All the compounds have shown good 

to moderate antifungal activity as shown in Table 5. The compound 4b, 4c, 4d and 4e having 

electron withdrawing groups exhibited good antifungal activity against these three fungal strains 

Aspergillus fumigates (NCIM 902), Aspergillus flavus (NCIM539) and Aspergillus niger 

(NCIM1196). The compound 4l bearing 4-hydroxy-3-ethoxy was found to be the most active 

compound among the synthesized series having MIC values 25 µg/ml for C. albicans, 28 µg/ml 

for C. glabrata, 28 µg/ml for F. oxysporum, 36 µg/ml for Asp. fumigates, 15 µg/ml for Asp. 

flavus, 12 µg/ml for Asp. niger, 12 µg/ml for Crypt. Neoformans. 
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Table 5. In-vitro antifungal activity of synthesized compounds 4 (a-o) 

Compound MIC aµg/ml 
Candida 
albicans 

Candida 
glabrata 

Fusarium 
oxysporum 

Aspergillus 
fumigates 

Aspergillus 
flavus 

Aspergillus 
niger 

Cryptococcus 
neoformans 

4a 66 58 55 84 38 43 54 
4b 30 32 34 30 14 15 15 
4c 30 28 35 28 15 18 14 
4d 28 30 30 28 15 20 18 
4e 28 26 30 28 12 15 14 
4f 43 57 39 44 20 22 20 
4g 50 57 35 52 24 20 26 
4h 48 64 45 50 38 34 34 

4i 32 35 35 42 25 28 24 
4j 46 47 38 55 32 30 35 
4k 25 30 28 38 12 15 15 
4l 25 28 28 36 15 12 12 
4m 48 46 40 45 25 22 28 

4n 55 53 58 67 32 38 33 
4o 56 55 55 65 46 49 48 

Miconazole 25 25 25 35 12 12 12 
 aValues are the average of three readings 

2.2 In-vitro antibacterial activity 

 The newly synthesized compounds 4(a–o) were screened for in vitro antibacterial activity 

against different bacterial strains.  All the compounds have shown good to moderate antibacterial 

activity as shown in Table 6 The compound 4b bearing 2,4 difluro was found to be the most 

active compound among the synthesized series having MIC values 48 µg/ml for E. coli, 50 

µg/ml for B. subtilis  and 52 µg/ml for S. aureus. 
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Table 6: In-vitro Antibacterial activity of the synthesized compounds 4 (a-0). 

Compounds MIC aµg/ml 

 E. coli B. subtilus S. aureus 
5a 70 68 65 

5b 52 50 54 

5c 50 52 52 

5d 50 49 50 

5e 48 50 52 

5f 64 58 55 

5g 62 60 62 

5h 68 68 66 

5i 64 66 67 

5j 68 72 72 

5k 55 55 54 

5l 56 54 54 

5m 68 74 78 

5n 65 74 72 

5o 66 74 70 

Ampicillin 50 50 50 
aValues are the average of three readings 

3. MATERIALS AND METHODS 

3.1. General Information 

All the reactions were performed in oven-dried glass-wares. All reagents and solvents 

were used as obtained from the supplier or recrystallized/redistilled unless otherwise noted. The 

purity of the synthesized compounds was monitored by ascending thin layer chromatography 

(TLC) on silica gel-G (Merck, Darmstadt, Germany) coated aluminum plates, visualized by 

iodine vapor and melting points were determined in open capillary tubes. The FTIR spectra were 

obtained using Jasco FTIR-4000 and peaks were expressed in terms of wave number (cm-1). The 
1H NMR and 13C NMR spectra of synthesized compounds were recorded on Bruker Avance II 

400 NMR Spectrometer at 400 MHz Frequency in CDCl3 and using TMS as internal standard 

(chemical shift δ in ppm), Mass spectra were scanned on Water’s Micromass Q-Tof system 

Elemental analyses (C, H, and N) were done with a FLASHEA 112 Shimadzu’ analyzer 
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(Mumbai, Maharashtra, India) and all analyses were consistent (within 0.4%) with theoretical 

values.  

3.2 Synthesis of 3-((dicyclohexylamino)(substituted phenyl/heteryl)methyl)-4-hydroxy-2H-

chromen-2-one derivatives 4 (a-o) 

A 25 mL a beaker was charged with a mixture of a suitable aldehyde (1.25mmol), 

dicyclohexyamine (1.25mmol), 4-hydroxy coumarin (1.25mmol), and 20 mol % of 

[Et3NH][HSO4] as catalyst and the reaction mixture was stirred at  room temperature. After 

completion of the reaction (monitored by TLC), the mixture was poured into ice cold water. The 

product obtained, was filtered and dried. The corresponding product was obtained in high purity 

after recrystallization of the crude product from ethanol. The authenticity of compounds was 

established by 1H-NMR, 13C-NMR, IR and Mass spectra. 

3-((dicyclohexylamino)(phenyl)methyl)-4-hydroxy-2H-chromen-2-one 4a 

Yield 92%; M. P.: 112-114 0C; IR (KBr vmax in cm-1): 3160.41(CH stretching of aromatic), 

1708.62 (C-O Stretch), 1646.91 (C=O Stretch); 1HNMR: (CDCl3) δ ppm: 1.11-1.58  (m, 20 H, 

cyclohexyl ring), 2.57 (m, 2H, C-N), 4.60 (s, 1H, CH), 7.22-7.35 (m, 5H, aromatic ring), 7.44-

7.87 (m, 4H, coumarin ring), 15.79 (s, 1H, OH); 13C NMR: (CDCl3) δ ppm: 25.49 (CH2), 25.79 

(CH2), 32.33 (CH2), 33.11 (CH2), 67.89 (CH2-N), 77.89 (CH-N), 93.34 (C), 117.72 (C), 118.00 

(CH), 123.45 (CH), 125.43 (CH), 127.23 (CH), 128.12 (CH), 128.99 (CH), 129.56 (CH), 137.23 

(C), 158.99 (C), 161.89 (C-OH), 162.35 (C=O); m/z: 431.25 (100.0%), 432.25 (30.8%), 433.25 

(5.2%); Molecular formula: C28H33NO3; Elemental Analysis: Calculated (C, H, N, O): 77.93, 

7.71, 3.25, 11.12, Found: 77.95, 7.70, 3.22, 11.15. 

3-((4-chlorophenyl)(dicyclohexylamino)methyl)-4-hydroxy-2H-chromen-2-one 4b 

Yield 95%; M. P.: 120-122 0C; IR (KBr vmax in cm-1): 3162.41(CH stretching of aromatic), 

1700.62 (C-O Stretch), 1646.77 (C=O Stretch), 740.55 (C-Cl of aromatic ring); 1HNMR: 

(CDCl3) δ ppm: 1.11-1.58  (m, 20 H, cyclohexyl ring), 2.55 (m, 2H, C-N), 4.65 (s, 1H, CH), 

7.32-7.39 (m, 4H, aromatic ring), 7.43-7.87  (m, 4H, coumarin ring), 15.74 (s, 1H, OH); 13C 

NMR: (CDCl3) δ ppm: 25.55 (CH2), 25.79 (CH2), 32.33 (CH2), 33.15 (CH2), 67.80 (CH2-N), 

77.88 (CH-N), 93.44 (C), 116.72 (C), 117.99 (CH), 123.34 (CH), 125.56 (CH), 128.00 (CH), 

128.39 (CH), 128.55 (CH), 129.34 (CH), 132.87 (C-Cl), 135.3 (C), 158.89 (C), 161.79 (C-OH), 

162.55 (C=O); m/z: 465.21 (100.0%), 467.20 (32.0%), 466.21 (30.8%), 468.21 (10.0%), 467.21 
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(5.2%), 469.21 (1.7%); Molecular formula: C28H32ClNO3; Elemental Analysis: Calculated (C, H, 

Cl, N, O): 72.17, 6.92, 7.61, 3.01, 10.30, Found: 72.15, 6.90, 7.65, 3.00, 10.33. 

3-((2,6-dichlorophenyl)(dicyclohexylamino)methyl)-4-hydroxy-2H-chromen-2-one 4c 

Yield 90%; M. P.: 126-128 0C; IR (KBr vmax in cm-1): 3162.33(CH stretching of aromatic), 

1707.12 (C-O Stretch), 1645.77 (C=O Stretch), 744.55 (C-Cl of aromatic ring); 1HNMR: 

(CDCl3) δ ppm: 1.12-1.59  (m, 20 H, cyclohexyl ring), 2.59 (m, 2H, C-N), 4.67 (s, 1H, CH), 

7.40-7.50 (m, 3H, aromatic ring ), 7.49-7.88 (m, 4H, coumarin ring), 15.74 (s, 1H, OH); 13C 

NMR: (CDCl3) δ ppm: 25.55 (CH2), 25.79 (CH2), 32.33 (CH2), 33.15 (CH2), 67.80 (CH2-N), 

77.88 (CH-N), 93.44 (C), 116.72 (C), 117.99 (CH), 123.38 (CH), 125.66 (CH), 126.78 (CH), 

128.56 (CH), 129.00 (CH), 135.55 (C-Cl), 158.99 (C), 161.59 (C-OH), 162.55 (C=O); m/z: 

499.17 (100.0%), 501.17 (69.1%), 500.17 (31.1%), 502.17 (19.7%), 503.16 (10.2%), 503.17 

(3.4%), 504.17 (3.3%); Molecular formula: C28H31Cl2NO3; Elemental Analysis: Calculated (C, 

H, Cl, N, O): 67.20, 6.24, 14.17, 2.80, 9.59, Found: 67.18, 6.22, 14.19, 2.78, 9.56. 

3-((dicyclohexylamino)(4-fluorophenyl)methyl)-4-hydroxy-2H-chromen-2-one 4d 

Yield 92%; M. P.: 122-124 0C; IR (KBr vmax in cm-1): 3160.33(CH stretching of aromatic), 

1708.32 (C-O Stretch), 1648.67 (C=O Stretch), 1053.44 (C-F of aromatic rings); 1HNMR: 

(CDCl3) δ ppm: 1.13-1.60  (m, 20 H, cyclohexyl ring), 2.59 (m, 2H, C-N), 4.60 (s, 1H, CH), 

7.13-7.25 (m, 4H, aromatic ring ), 7.49-7.88 (m, 4H, coumarin ring), 15.74 (s, 1H, OH); 13C 

NMR: (CDCl3) δ ppm: 25.55 (CH2), 25.79 (CH2), 32.33 (CH2), 33.15 (CH2), 67.80 (CH2-N), 

77.88 (CH-N), 93.44 (C), 115.55 (C), 116.72 (C), 117.99 (CH), 123.35 (CH), 125.66 (CH), 

128.06 (CH), 129.99 (CH), 132.55 (C), 158.99 (C), 160.00 (C-F), 161.59 (C-OH), 162.55 

(C=O); m/z: 449.24 (100.0%), 450.24 (30.8%), 451.24 (5.2%); Molecular formula: C28H32FNO3; 

Elemental Analysis: Calculated (C, H, F, N, O): 74.81, 7.17, 4.23, 3.12, 10.68, Found: 74.80, 

7.14, 4.25, 3.10, 10.67. 

3-((dicyclohexylamino)(2,4-difluorophenyl)methyl)-4-hydroxy-2H-chromen-2-one 4e 

Yield 89%; M. P.: 122-124 0C; IR (KBr vmax in cm-1): 3166.33(CH stretching of aromatic), 

1708.32 (C-O Stretch), 1648.67 (C=O Stretch), 1055.64 (C-F of aromatic rings); 1HNMR: 

(CDCl3) δ ppm: 1.12-1.60  (m, 20 H, cyclohexyl ring), 2.60 (m, 2H, C-N), 4.60 (s, 1H, CH), 



12 

 

6.63-7.15 (m, 3H, aromatic ring ), 7.45-7.86 (m, 4H, coumarin ring), 15.75 (s, 1H, OH); 13C 

NMR: (CDCl3) δ ppm: 25.45 (CH2), 26.49 (CH2), 31.33 (CH2), 33.15 (CH2), 66.40 (CH2-N), 

70.86 (CH-N), 93.44 (C), 105.56 (CH), 111.11 (CH), 115.55 (C), 116.82 (C), 117.90 (CH), 

124.15 (CH), 125.96 (CH), 128.00 (CH), 132.00 (CH), 158.19 (C), 159.90 (C-F), 161.07 (C-F), 

161.59 (C-OH), 162.55 (C=O); m/z: 467.23 (100.0%), 468.23 (30.8%), 469.23 (5.2%); 

Molecular formula: C28H31F2NO3; Elemental Analysis: Calculated (C, H, F, N, O):  71.93, 6.68, 

8.13, 3.00, 10.27, Found: 71.90, 6.64, 8.15, 3.27, 10.28. 

3-((dicyclohexylamino)(4-methoxyphenyl)methyl)-4-hydroxy-2H-chromen-2-one 4f 

Yield 86%; M. P.: 133-135 0C; IR (KBr vmax in cm-1): 3162.33(CH stretching of aromatic), 

1707.32 (C-O Stretch), 1650.67 (C=O Stretch), 1230.23 (C-OCH3 of aromatic rings); 1HNMR: 

(CDCl3) δ ppm: 1.12-1.58  (m, 20 H, cyclohexyl ring), 2.62 (m, 2H, C-N), 3.53 (s, 3H, OCH3), 

4.57 (s, 1H, CH), 6.68-7.17 (m, 4H, aromatic ring ), 7.42-7.86 (m, 4H, coumarin ring), 15.75 (s, 

1H, OH); 13C NMR: (CDCl3) δ ppm: 25.45 (CH2), 26.49 (CH2), 31.33 (CH2), 33.15 (CH2), 56.65 

(OCH3), 66.40 (CH2-N), 70.86 (CH-N), 93.44 (C), 114.77 (CH), 116.72 (C), 117.59 (CH), 

123.95 (CH), 125.96 (CH), 127.56 (CH), 128.00 (CH), 129.77 (C), 158.19 (C), 159.99 (C-

OCH3), 161.59 (C-OH), 162.55 (C=O); m/z: 461.26 (100.0%), 462.26 (31.9%), 463.26 (5.7%); 

Molecular formula: C29H35NO4; Elemental Analysis: Calculated (C, H, N, O):  75.46, 7.64, 3.03, 

13.86, Found: 75.44, 7.61, 3.00, 13.88. 

3-((dicyclohexylamino)(3,4-dimethoxyphenyl)methyl)-4-hydroxy-2H-chromen-2-one 4g 

Yield 84%; M. P.: 138-140 0C; IR (KBr vmax in cm-1): 3160.53(CH stretching of aromatic), 

1709.52 (C-O Stretch), 1655.17 (C=O Stretch), 1235.03 (C-OCH3 of aromatic rings); 1HNMR: 

(CDCl3) δ ppm: 1.13-1.59  (m, 20 H, cyclohexyl ring), 2.58 (m, 2H, C-N), 3.55 (s, 6H, OCH3), 

4.57 (s, 1H, CH), 6.68-7.00 (m, 3H, aromatic ring ), 7.45-7.86 (m, 4H, coumarin ring), 15.79 (s, 

1H, OH); 13C NMR: (CDCl3) δ ppm: 25.55 (CH2), 24.99 (CH2), 33.23 (CH2), 34.15 (CH2), 69.40 

(CH2-N), 77.86 (CH-N), 56.66 (OCH3), 94.34 (C), 112.99 (CH), 113.79 (CH), 117.02 (C), 

117.89 (CH), 120.09 (CH), 123.95 (CH), 125.96 (CH), 128.00 (CH), 130.57 (C), 148.45 (C-

OCH3), 149.39 (C-OCH3), 158.10 (C), 162.19 (C-OH), 162.55 (C=O); m/z: 491.27 (100.0%), 

492.27 (33.1%), 493.27 (6.3%); Molecular formula: C30H37NO5; Elemental Analysis: Calculated 

(C, H, N, O):   73.29, 7.59, 2.85, 16.27, Found: 73.25, 7.57, 2.82, 16.29. 
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3-((dicyclohexylamino)(3,4,5-trimethoxyphenyl)methyl)-4-hydroxy-2H-chromen-2-one 4h 

Yield 82%; M. P.: 136-138 0C; IR (KBr vmax in cm-1): 3168.03(CH stretching of aromatic), 

1710.02 (C-O Stretch), 1658.07 (C=O Stretch), 1234.93 (C-OCH3 of aromatic rings); 1HNMR: 

(CDCl3) δ ppm: 1.14-1.60  (m, 20 H, cyclohexyl ring), 2.59 (m, 2H, C-N), 3.56 (s, 9H, OCH3), 

4.59 (s, 1H, CH), 6.29-6.90 (m, 2H, aromatic ring ), 7.42-7.89 (m, 4H, coumarin ring), 15.79 (s, 

1H, OH); 13C NMR: (CDCl3) δ ppm: 25.39 (CH2), 25.66 (CH2), 32.73 (CH2), 34.15 (CH2), 56.65 

(OCH3), 62.56 (OCH3), 70.40 (CH2-N), 78.46 (CH-N), 93.44 (C), 106.22 (CH), 116.92 (C), 

117.59 (CH), 124.15 (CH), 126.06 (CH), 128.10 (CH), 131.77 (C), 137.78 (C-OCH3), 155.66 (C-

OCH3), 158.11 (C), 162.09 (C-OH), 162.75 (C=O); m/z: 521.28 (100.0%), 522.28 (34.2%), 

523.28 (6.8%), 524.29 (1.0%); Molecular formula: C31H39NO6; Elemental Analysis: Calculated 

(C, H, N, O):  71.38, 7.54, 2.69, 18.40, Found: 71.35, 7.52, 2.65, 18.42. 

3-((dicyclohexylamino)(4-hydroxyphenyl)methyl)-4-hydroxy-2H-chromen-2-one 4i 

Yield 90%; M. P.: 128-130 0C; IR (KBr vmax in cm-1): 3333.56 (C-OH of aromatic ring), 

3170.03(CH stretching of aromatic), 1715.02 (C-O Stretch), 1660.07 (C=O Stretch); 1HNMR: 

(CDCl3) δ ppm: 1.14-1.60  (m, 20 H, cyclohexyl ring), 2.59 (m, 2H, C-N), 4.59 (s, 1H, CH), 

6.29-6.90 (m, 4H, aromatic ring ), 7.42-7.89 (m, 4H, coumarin ring), 15.79 (s, 1H, OH); 13C 

NMR: (CDCl3) δ ppm: 25.39 (CH2), 25.66 (CH2), 32.73 (CH2), 34.15 (CH2), 66.54 (C), 78.46 

(CH-N), 92.64 (C), 116.22 (CH), 116.92 (C), 117.59 (CH), 123.95 (CH), 124.86 (CH), 128.10 

(CH), 129.17 (C), 131.77 (C), 158.11 (C), 159.00 (C-OH), 161.09 (C-OH), 162.95 (C=O); m/z: 

447.24 (100.0%), 448.24 (30.7%), 449.25 (5.4%); Molecular formula: C28H33NO4; Elemental 

Analysis: Calculated (C, H, N, O):  75.14, 7.43, 3.13, 14.30, Found: 75.12, 7.41, 3.10, 14.32. 

3-((dicyclohexylamino)(2-hydroxyphenyl)methyl)-4-hydroxy-2H-chromen-2-one 4j 

Yield 88%; M. P.: 130-132 0C; IR (KBr vmax in cm-1): 3333.86 (C-OH of aromatic ring), 

3172.03(CH stretching of aromatic), 1720.02 (C-O Stretch), 1665.00 (C=O Stretch); 1HNMR: 

(CDCl3) δ ppm: 1.14-1.62  (m, 20 H, cyclohexyl ring), 2.55 (m, 2H, C-N), 4.59 (s, 1H, CH), 

6.29-6.90 (m, 4H, aromatic ring ), 7.43-7.88 (m, 4H, coumarin ring), 15.79 (s, 1H, OH); 13C 

NMR: (CDCl3) δ ppm: 25.33 (CH2), 25.65 (CH2), 32.72 (CH2), 34.25 (CH2), 66.64 (C), 79.36 

(CH-N), 93.54 (C), 116.21 (CH), 116.91 (C), 117.48 (CH), 122.95 (CH), 124.86 (CH), 128.19 

(CH), 129.07 (C), 131.87 (C), 158.91 (C), 159.20 (C-OH), 161.19 (C-OH), 162.96 (C=O); m/z: 
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447.24 (100.0%), 448.24 (30.7%), 449.25 (5.4%); Molecular formula: C28H33NO4; Elemental 

Analysis: Calculated (C, H, N, O):  75.14, 7.43, 3.13, 14.30, Found: 75.13, 7.40, 3.11, 14.31. 

3-((dicyclohexylamino)(4-hydroxy-3-methoxyphenyl)methyl)-4-hydroxy-2H-chromen-2-one 4k 

Yield 86%; M. P.: 144-146 0C; IR (KBr vmax in cm-1): 3334.56 (C-OH of aromatic ring), 

3170.03(CH stretching of aromatic), 1725.02 (C-O Stretch), 1665.10 (C=O Stretch), 1234.95 (C-

OCH3 of aromatic rings); 1HNMR: (CDCl3) δ ppm: 1.14-1.62  (m, 20 H, cyclohexyl ring), 2.55 

(m, 2H, C-N), 3.57 (s, 3H, OCH3), 4.59 (s, 1H, CH), 6.29-6.97 (m, 3H, aromatic ring ), 7.43-7.88 

(m, 4H, coumarin ring), 15.79 (s, 1H, OH); 13C NMR: (CDCl3) δ ppm: 25.33 (CH2), 25.65 

(CH2), 32.72 (CH2), 34.25 (CH2), 56.65 (OCH3), 66.64 (C), 79.36 (CH-N), 93.54 (C), 114.48 

(CH), 115.78 (CH), 116.61 (CH), 116.91 (C), 120.95 (CH), 123.86 (CH), 125.19 (CH), 129.07 

(C), 131.87 (C), 147.77 (C-OCH3), 148.99 (C-OH), 155.91 (C), 161.19 (C-OH), 162.96 (C=O); 

m/z: 477.25 (100.0%), 478.25 (31.7%), 479.26 (6.0%); Molecular formula: C29H35NO5; 

Elemental Analysis: Calculated (C, H, N, O):  72.93, 7.39, 2.93, 16.75, Found: 72.91, 7.36, 2.90, 

16.77. 

3-((dicyclohexylamino)(3-ethoxy-4-hydroxyphenyl)methyl)-4-hydroxy-2H-chromen-2-one 4l 

Yield 86%; M. P.: 140-142 0C; IR (KBr vmax in cm-1): 3333.66 (C-OH of aromatic ring), 

3170.03(CH stretching of aromatic), 1725.02 (C-O Stretch), 1665.10 (C=O Stretch); 1HNMR: 

(CDCl3) δ ppm: 1.14-1.62  (m, 20 H, cyclohexyl ring), 1.65 (t, 3H, OCH2OCH3 ), 2.55 (m, 2H, 

C-N), 3.57 (s, 3H, OCH3), 4.09 (q, 2H, OCH2OCH3), 4.59 (s, 1H, CH), 5.35 (s, 1H, OH), 6.69-

6.87 (m, 3H, aromatic ring ), 7.43-7.88 (m, 4H, coumarin ring), 16.79 (s, 1H, OH); 13C NMR: 

(CDCl3) δ ppm: 14.88 (CH3), 25.30 (CH2), 25.65 (CH2), 32.72 (CH2), 34.25 (CH2), 65.10 

(OCH2), 66.65 (C), 77.86 (CH-N), 92.54 (C), 114.58 (CH), 114.78 (CH), 116.51 (CH), 116.91 

(C), 119.95 (CH), 123.76 (CH), 125.39 (CH), 128.07 (CH), 130.47 (C), 147.87 (C-OH), 148.99 

(C-OCH2CH3), 153.91 (C), 162.19 (C-OH), 163.06 (C=O); m/z: 491.27 (100.0%), 492.27 

(33.1%), 493.27 (6.3%); Molecular formula: C30H37NO5; Elemental Analysis: Calculated (C, H, 

N, O): 73.29, 7.59, 2.85, 16.27, Found: 73.24, 7.55, 2.81, 16.28. 
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3-((dicyclohexylamino)(pyridin-2-yl)methyl)-4-hydroxy-2H-chromen-2-one 4m 

Yield 84%; M. P.: 148-150 0C; IR (KBr vmax in cm-1): 3170.03(CH stretching of aromatic), 

1725.02 (C-O Stretch), 1665.10 (C=O Stretch); 1HNMR: (CDCl3) δ ppm: 1.14-1.62  (m, 20 H, 

cyclohexyl ring), 2.55 (m, 2H, C-N), 4.59 (s, 1H, CH), 7.31-7.46 (m, 2H, pyridine ring ), 7.43-

7.80 (m, 4H, coumarin ring), 7.73 (d, 2H, CH2), 8.46 (d, 2H, CH2), 16.79 (s, 1H, OH); 13C NMR: 

(CDCl3) δ ppm: 25.30 (CH2), 25.65 (CH2), 32.72 (CH2), 34.25 (CH2), 54.33 (CH-N), 66.22 (C), 

92.65 (C), 116.89 (C), 117. 45 (CH), 121.21 (CH), 123.34 (CH), 126.87 (CH), 128.78 (CH), 

136.77 (CH), 148.67 (CH), 152.33 (C), 155.22 (C), 161.18 (C=O), 163.17 (C-OH); m/z: 432.24 

(100.0%), 433.24 (29.9%), 434.25 (4.9%); Molecular formula: C27H32N2O3; Elemental Analysis: 

Calculated (C, H, N, O): 74.97, 7.46, 6.48, 11.10, Found: 74.95, 7.44, 6.44, 11.11.  

3-((dicyclohexylamino)(thiophen-2-yl)methyl)-4-hydroxy-2H-chromen-2-one  4n 

Yield 88%; M. P.: 140-142 0C; IR (KBr vmax in cm-1): 3170.03(CH stretching of aromatic), 

1725.02 (C-O Stretch), 1665.10 (C=O Stretch); 1HNMR: (CDCl3) δ ppm: 1.14-1.62  (m, 20 H, 

cyclohexyl ring), 2.57 (m, 2H, C-N), 4.49 (s, 1H, CH), 6.77-7.40 (m, 3H, thiophene ring ), 7.43-

7.80 (m, 4H, coumarin ring), 16.79 (s, 1H, OH); 13C NMR: (CDCl3) δ ppm: 25.30 (CH2), 25.65 

(CH2), 32.72 (CH2), 34.25 (CH2), 54.77 (CH-N), 66.29 (C), 92.55 (C), 116.69 (C), 117. 15 (CH), 

123.21 (CH), 125.56 (CH), 125.99 (CH), 126.75 (CH), 127.78 (CH), 128.76 (CH), 139.89 (C), 

153.45 (C), 162.21 (C-OH), 163.00 (C=O); 437.20 (100.0%), 438.21 (28.6%), 439.21 (4.8%), 

439.20 (4.6%), 440.20 (1.3%), 438.20 (1.2%); Molecular formula: C26H31NO3S; Elemental 

Analysis: Calculated (C, H, N, O, S): 71.36, 7.14, 3.20, 10.97, 7.33; Found: 71.34, 7.12, 3.18, 

10.98, 7.32. 

3-((dicyclohexylamino)(furan-2-yl)methyl)-4-hydroxy-2H-chromen-2-one 4o 

Yield 86%; M. P.: 148-150 0C; IR (KBr vmax in cm-1): 3170.03(CH stretching of aromatic), 

1725.02 (C-O Stretch), 1665.10 (C=O Stretch); 1HNMR: (CDCl3) δ ppm: 1.17-1.72  (m, 20 H, 

cyclohexyl ring), 2.58 (m, 2H, C-N), 4.89 (s, 1H, CH), 6.27-6.50 (m, 2H, thiophene ring ), 7.40-

7.89 (m, 4H, coumarin ring), 16.79 (s, 1H, OH); 13C NMR: (CDCl3) δ ppm: 25.38 (CH2), 25.75 

(CH2), 32.79 (CH2), 34.85 (CH2), 55.37 (CH-N), 63.89 (C), 93.35 (C), 106.77 (CH), 110.78 

(CH), 116.79 (CH), 116.99 (C), 123.55 (CH), 125.78 (CH), 128.87 (CH), 143.44 (CH), 152.36 

(C), 154.00 (C), 161.99 (C-OH), 162.67 (C=O); m/z: 421.23 (100.0%), 422.23 (28.6%), 423.23 
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(4.9%); Molecular formula: C26H31NO4; Elemental Analysis: Calculated (C, H, N, O):  74.08, 

7.41, 3.32, 15.18, Found: 74.08, 7.41, 3.32, 15.18. 

3.3 In-vitro antimicrobial activity 

All the synthesized compounds were screened for in vitro antifungal and antibacterial 

activity.  The antibacterial activity was evaluated against three human pathogenic bacterial 

strains, such as Escherichia coli (NCIM-2256), Bacillus subtilis (NCIM-2063) and 

Staphylococcus aureus (NCIM-2901). The antifungal activity was evaluated against seven 

human pathogenic fungal strains, such as Candida albicans (NCIM3471), Candida glabrata 

(NCYC 388), Fusarium oxysporum (NCIM1332), Aspergillus fumigates (NCIM 902), 

Aspergillus flavus (NCIM539), Aspergillus niger (NCIM1196), Cryptococcus neoformans 

(NCIM576), which are often encountered clinically, and were compared with standard drug, 

miconazole (Table 4). Minimum inhibitory concentration (MIC) values were determined using 

the standard agar method as per CLSI guidelines [24-27]. 

4. CONCLUSION 

In conclusion, a novel series of 3-((dicyclohexylamino)(substituted 

phenyl/heteryl)methyl)-4-hydroxy-2H-chromen-2-one derivatives 4 (a-o) have been synthesized 

using Green protocol. The synthesized compounds were evaluated for their antifungal activity. 

Use of green catalyst, i.e. triethyl ammonium sulphate as an ionic liquid helped us in the 

synthesis of expected derivatives in good yields and is advantageous being an eco-friendly 

method. The mild reaction conditions, excellent yields in shorter reaction time and evasion of 

cumbersome work-up procedures make this process economically lucrative for industrial 

application with the advantage of reusability of catalyst. In the present series the compound 4e 

with 2,4-di Fluro substituent  on phenyl group found to be most potent antibacterial agent. The 

compound 4k with 4-hydroxy-3-methoxy on phenyl group found to be most potent antibacterial 

agent. 

ACKNOWLEDGEMENTS 

The authors are thankful to Mrs. Fatma Rafiq Zakaria, Chairman, Maulana Azad 

Educational Trust and Dr. Zahid Zaheer, Principal, Y.B. Chavan College of Pharmacy, Dr. Rafiq 

Zakaria Campus, Aurangabad 431001 (MS), India for providing the laboratory facility. 

 



17 

 

REFERENCES 

1. K. Zomorodian, N.R. Moein, M. J. Rahimi, K. Pakshir, Y. Ghasemi, S. Abdi, S. 

Sharbatfar, Possible Application and Chemical Compositions of Carum copticum 

Essential Oils Against Food borne and Nosocomial Pathogens. Middle-East J. Sci. Res. 2,  

2011,  239-245. 

2. S. Mamishi, K. Zomorodian, F. Saadat, M.Gerami-Shoar, B. Tarazooie, S.A. Siadati, A 

case of invasive aspergillosis in CGD patient successfully treated with Amphotericin B 

and INF-gamma. Ann. Clin. Microbiol. Antimicrob. 4, 2005, 1-4. 

3. M.G. Shoar, K. Zomorodian, F. Saadat, M.J. Hashemi, B. Tarazoei, Fatal endocarditis 

due to Aspergillus flavus in Iran. J. Pak. Med. Assoc. 9, 2004, 485-486. 

4. I.T. Drakensjo, E. Chryssanthou, Epidemiology of dermatophyte infections in Stockholm, 

Sweden: a retrospective study from 2005–2009. Med. Mycol. 5, 2011, 484-488. 

5. P. Badiee, A. Alborzi, Invasive fungal infections in renal transplant recipients. 

Experimental and Clinical Transplantation.; 6, 2011, 355-362. 

6. B.V. S. Reddy, B. Divya, M. Swain, T.P. Rao, J.S. Yadav, M.V.P.S. Vishnuvardhan, A 

domino Knoevenagel hetero-Diels–Alder reaction for the synthesis of polycyclic 

chromene derivatives and evaluation of their cytotoxicity. Bioorg. Med. Chem. Lett. 22 

(5) (2012) 1995-1999. 

7. N. Arumugam, R. Raghunathan, A.I. Almansour, U. Karama, An efficient synthesis of 

highly functionalized novel chromeno [4, 3-b] pyrroles and indolizino [6, 7-b] indoles as 

potent antimicrobial and antioxidant agents. Bioorg. Med. Chem. Lett. 3, 2012, 1375-

1379. 

8. R. Devakaram, D.S. Black, V. Choomuenwai, R.A. Davis, N. K.umar, Synthesis and 

antiplasmodial evaluation of novel chromeno[2,3-b]chromene derivatives. Bioorg. Med. 

Chem. 4, 2012, 1527-1534. 

9. R. Devakaram, D.S. Black, K.T. Andrews, G.M. Fisher, R.A. Davis, N. Kumar, Synthesis 

and antimalarial evaluation of novel benzopyrano[4,3-b]benzopyran derivatives. Bioorg. 

Med. Chem. 17, 2011, 5199-5206.  

10. C. Conti, L. Proietti Monaco, N. Desideri, Design, synthesis and in vitro evaluation of 

novel chroman-4-one, chroman, and 2H-chromene derivatives as human rhinovirus 

capsid-binding inhibitors. Bioorg. Med. Chem. 24, 2011, 7357-7364. 



18 

 

11. R. Zhang, Z. Xu, W. Yin, P. Liu, W. Zhang, Microwave-Assisted Synthesis and 

Antifungal Activities of Polysubstituted Furo[3,2-c]chromen-4-ones and 7,8,9,10-

Tetrahydro-6H-benzofuro[3,2-c]chromen-6-ones. Synth. Commun. 22, 2014, 3257-3263. 

12. R. Hosseinnia, M. Mamaghani, K. Tabatabaeian, F. Shirini, M. Rassa, An expeditious 

regioselective synthesis of novel bioactive indole-substituted chromene derivatives via 

one-pot three-component reaction. Bioorg. Med. Chem. Lett. 18, 2012, 5956-5960. 

13. Muller, R; Goesmann, H; Waldmann, H; \N,N Phthaloylaminoacids as chiral auxiliaries 

in asymmetricMannich-type reactions", Angew. Chem. Ed. Engl. 38, 1999, 184-187. 

14. Leadbeater, N.E.; Torenius, H.M.; Tye, H. Microwave-assisted Mannich-type three-

component reactions. Mol. Divers. 2003, 7, 135. 

15. Blatt, A.H.; Gross, N. The addition of ketones to Schiff bases. J. Org. Chem. 29, 1964, 

3306-3311. 

16. List, B.; Pojarliev, P.; Biller, W.T.; Martin, H.J. The proline catalyzed direct asymmetric 

three-component mannich reaction: Scope, optimization, and application to the highly 

enantioselective synthesis of 1,2-amino alcohols. J. Am. Chem. Soc. 2002, 124, 827-833. 

17. Manabe, K.; Mori, Y.; Kobayashi, S. Three component carbon-carbon bond forming 

reactions catalyzed by a bronsted acid-surfactant-combined catalyst in water. 

Teterahedron.  57, 2001, 2537-2544. 

18. Yang, X.; Wang, M.; Varma, R..; Li, C. Ruthernium-catalyzed tandem olefin migration 

Aldol and mannich type reactions in ionic liquid. J.  Mol. Catal. A.; 2004, 214, 147-154. 

19. Akiyama,T.; Suzuki, A.; Fuchibe, K. Mannich-type reaction promoted by anionic 

liquid.Synlett, 6, 2005, 1024-1026. 

20. Yong, F.F.; Teo, Y.C. Recyclable siloxy serine organocatalyst for the direct asymmetric 

Mannich reaction in ionic liquids. Synth. Commun. 41, 2011, 1293-1300. 

21. Li, J.; Peng, Y.; Song, G. Mannich reaction catalyzed by carboxyl-functionalized ionic 

liquid in aqueous media. Catal. Lett. 102, 2005, 159-162.  

22. Zhao, G.; Jiang, T.; Gao, H.; Han, B.; Huang, J.; Sun, D.  Mannich reaction using acidic 

ionic liquids as catalyst and solvents. Green Chem. 6, 2004, 75-77. 

23. Sahoo, S.; Joseph, T.; Halligudi, S.B. Mannich  reaction in bronsted  acidicionic liquid: A 

facile synthesis of β-amino carbonyl compounds. J. Mol. Catal. A. 224, 2006, 179-182. 



19 

 

24. Medicinal Microbiology; Cruickshank, R., Duguid, J. P., Marmion, B. P., Swain, R.H. 

A., Eds., 2nd ed.; Churchill Livingstone: London, 1975; 2. 

25. Collins, A. H. Microbiological Methods, 2nd ed.; Butterworth: London, 1976. 

26. Khan, Z. K. In vitro and vivo screening techniques for bioactivity screening and 

evaluation, Proc. Int. Workshop UNIDO-CDRI, 1997, 210. 

27. Duraiswamy, B.; Mishra, S. K.; Subhashini, V.; Dhanraj, S. A.; Suresh, B. Indian J. 

Pharm. Sci. 68, 2006,  389. 

 

 

 

 

 


