

1st International Electronic Conference on Water Sciences

15-29 November 2016 chaired by Prof. Dr. Wilhelm Püttmann

Exploiting carbon and nitrogen compounds for enhanced energy and resource recovery

Bahareh Kokabian Veera Gnaneswar Gude Civil & Environmental Engineering Department

Content

Introduction

Energy Concern, Sustainable Energy Recovery Photosyntheitc Microbial Desalination Cell Algae role as sustainable Biocathode

* Objectives

Light and Dark cycles effect on PMDC effect Effect of Wastewater Concentration Microbial community detection

- * Materials and Methods
- * Results
- Conclusion

Energy Concerns

- * Over 95% of the world's energy requirement is currently met by fossil fuels, coal, oil, and natural gas.
- Provision of clean water and wastewater treatment requires about 4 Kwh m-3.
- Needs for alternative non-fossil, non-nuclear, environmental friendly and renewable energy producing technologies.

Bioelectrochemical Systems(BES)

Reactions with Standard potential (E⁰),ad actual potential (E)

			E^0 (V vs NHE)	E (V vs NHE
Anodic oxidation read	ction			
Acetate	$C_2H_3O_2^- +$	$4 H_2O \rightarrow 2 HCO_3^- + 9 H^+ + 8 e^-$	0.187	-0.289
Glucose	$C_6H_{12}O_6 +$	$12 \text{ H}_2\text{O} \rightarrow 6 \text{ HCO}_3^- + 30 \text{ H}^+ + 24 \text{ e}^-$	0.104	-0.429
Glycerol	$C_{3}H_{8}O_{3} + 6$	$0 \text{ H}_2\text{O} \rightarrow 3 \text{ HCO}_3^- + 17 \text{ H}^+ + 14 \text{ e}^-$	0.118	-0.396
Malate	C4H5O5 +	$7 \text{ H}_2\text{O} \rightarrow 4 \text{ H}_2\text{CO}_3 + 11 \text{ H}^+ + 12 \text{ e}^-$	0.01	-0.274
Citrate	C ₆ H ₅ O ₇ ³⁻ +	$11 \text{ H}_2\text{O} \rightarrow 6 \text{ H}_2\text{CO}_3 + 15 \text{ H}^+ + 18 \text{ e}^-$	0.022	-0.242
Glycine	C2H5NO2 +	$4 \text{ H}_2\text{O} \rightarrow 2 \text{ HCO}_3^- + 7 \text{ H}^+ + 1 \text{ NH}_4^+ + 6 \text{ e}^-$	0.131	-0.24
Serine	C ₃ H ₇ NO ₃ +	$6 \text{ H}_2\text{O} \rightarrow 3 \text{ HCO}_3^- + 12 \text{ H}^+ + 1 \text{ NH}_4^+ + 10 \text{ e}^-$	0.105	-0.273
Sulfur	$HS^- \rightarrow S^0$	$+ H^{+} + 2e^{-}$	-0.062	-0.23
Cathodic reduction re	saction			
Oxygen to water		$O_2 + 4 H^+ + 4 e^- \rightarrow 2 H_2O$	1,229	0.805
Oxygen to hydrogen peroxide		$O_2 + 2 H^+ + 2 e^- \rightarrow H_2O_2$	0.694	0.269
Protons to hydrogen		$2 \text{ H}^+ + 2 \text{ e}^- \rightarrow \text{H}_2$	0	-0.414
Bicarbonate to methane		$HCO_3^- + 9 H^+ + 8 e^- \rightarrow CH_4 + 3 H_2O$	0.227	-0.248
Acetate to ethanol		$C_2H_3O_2^-$ + 5 H ⁺ + 4 e ⁻ \rightarrow C_2H_6O + H ₂ O	0.128	-0.408
Nitrate to nitrogen g	as	$2 \text{ NO}_3^- + 12 \text{ H}^+ + 10 \text{ e}^- \rightarrow N_2 + 6 \text{ H}_2\text{O}$	1,246	0.734

(Hamelers et al. 2010)

Photosyntheitc Microbial Desalination Cell

Anodic Reaction

C₆H₁₂O₆₊12 H₂O Anodiphilc Bacteria 6HCO₃⁻+30H⁺+24e E=-0.429

Cathodic Reaction

 O_2 +4H⁺+4e <u>Algae</u> H₂O E=0.805

- ✤ Self sustainable system
- **♦** O₂ production/utilization
- * Electricity production
- ✤ Desalination of sea water
- ✤ Wastewater treatment

Why Algae?

Photoautotrophic microorganismsprovide oxygen as an electron acceptor to the cathode reaction.

 $nCO_2 + nH_2O \xrightarrow{algae,hv} (CH_2O)_n + nO_2$

- Biocatalystic role of Algae increases the sustainability of MDCs and makes them more environmental friendly by replacing the toxic, unsustainable chemical cathodes.
- ✤ Algae function as or provide a substrate for supplying electrons

Why Algae?

- * Energy Resource, Algal Biofuel
 - Biodegradable
 - Harmless to the Environment
 - Only release CO₂
- * Ease of growth
 - They provide many vitamins including: A, B1, B2, B6 and C, and are rich in iodine, potassium, iron, magnesium and Calcium
- Nutrition
- Nutrient Removal (Nitrogenous and Phosphorus compounds)

✤ CO₂ Fixation and Sequestration

 $106 \text{ CO}_2 + 16 \text{ HNO}_3 + \text{H}_3\text{PO}_4 + 78 \text{ H}_20 \xrightarrow{\clubsuit} \text{C}_{106}\text{H}_{175}\text{O}_{42}\text{N}_{16}\text{P} + 150 \text{ O}_2$

Objectives

- * To investigate the effect of light/dark cycles on the Current generation
- * To Study the effect of wastewater organic concentration on PMDC performance
- * To elucidate the role of microalgae in the biocathode of microbial desalination cells
- * To detect microbial communities responsible for electricity generation

Material and methods

* Anode:

- Microbial consortium from wastewater treatment plant in Starkville
- ★ medium used in anode chamber was a synthetic waste water containing: Glucose 468.7 mg/l, KH₂PO₄(4.4 g/l), K₂HPO₄(3.4 g/l), NH₄Cl(1.5 g/l), MgCl₂ (0.1 g/l), CaCl₂ (0.1 g/l), KCl(0.1 g/l), MnCl₂4.H₂O(0.005 g/l), and NaMo.O₄.2H₂O(0.001 g/l)

* Cathode:

- * The micro algae-Chlorella vulgaris-
- CaCl₂ (25 mg/l), NaCl (25 mg/l), NaNO₃ (250 mg/l), MgSO₄ (75 mg/l), KH₂PO₄ (105 mg/l), K₂HPO₄ (75 mg/l), and 3 ml of trace metal solution with the following concentration was added to the 1000 ml of the above solution: FeCl₃ (0.194 g/l), MnCl₂ (0.082 g/l), CoCl₂ (0.16 g/l), Na₂Mo.O4.2H₂O (0.008 g/l), and ZnCl₂ (0.005 g/l).

Material and methods

MDC Reactors

- ✤ 2 plexiglass cylindrical-shaped with 7.2 cm diameter, V=180 ml
- ✤ Graphite papers as electrodes
- Cation exchange membrane (CEM, CMI 7000, Membranes international,)
- Anion exchange membrane(AEM, AMI 7001, Membranes international)
- ✤ Volume of desalination chamber=200 ml
- ✤ Initial NaCl=10 g/l
- ✤ Initial COD= 500 mg/l

		COD	рН	DO _a	DO _{St.}
Results	Cycle 1		_	vc	Dev
	initial		8.1	7.5	0.172
Effect of organic carbon Concentration	final	500	11.3	6.6	0.030
Voltage generation		1000	11.4	5.9	0.036
0.4	Cycle 2				
	initial		8.2	7.8	0.026
	final	500	11.4	5.3	0.151
		1000	11.6	5.7	0.415
	Cycle 3				
	5 initial		8	8.3	0.115
^{>} 0.15 1 1 1 1 1 1 1 1 1 1		500			
	final	1000	11.7	5.5	0.515
$0.05 - A$ $\rightarrow 500 \text{ mg/l COD} - 1000 \text{ mg/l COD}$	Cycle 4		11.4	5.9	0.300
0 250 500 750 1000	initial		8.2	9.6	0.206
Time(hr)	final	500	12	4.3	0.212
		1000	11.7	4.5	0.175

Effect of organic carbon Concentration

Cyclic Voltammetry test

Wastewater	CE%
500 mg/l	64.21%
1000 mg/l	63.47%

Effect of organic carbon Concentration Salinity test

Effect of organic carbon Concentration Current Efficiency

$$\eta = \frac{F * (C_{in} - C_f) * V_D}{\sum I(A) * t(s)}$$

COD mg/l	Current Efficiency	
500 mg/l	216%	
1000 mg/l	226%	

□ 1000 mg/l COD

— Linear (500 mg/l COD)

— Linear (1000 mg/l COD)

Effect of batch test

Continuous PMDC

Continuous PMDC

Cathode DO

Continuous PMDC

Microbial Analysis Real Time QPCR

Bacterial Real Time QPCR

Microbial Community Result

• Anode suspension solution

Bacteroides graminisolvens Paludibacter sp.(Bacteriodes)

• Electrode Biofilm

Toluene-degrading methanogenic consortium

• Purple Solids

Bacteroides graminisolvens

Salmonella enterica (Gammaproteobacteria class)

• Biofilm on Anion exchange membrane

Klebsiella pneumoniae

Proteobacterium (Reported as Exoelectrogenic bacteria)

• Anode Sediment

Klebsiella pneumoniae (Gammaproteobacteria class, **Reported as Exoelectrogenic** bacteria)

alpha proteobacterium (Reported as Exoelectrogenic bacteria)

• Salt solution

Klebsiella pneumoniae (Gammaproteobacteria class, **Reported as Exoelectrogenic** bacteria)

Photobacterium damselae subsp.(Gammaproteobacteria class)

- ✤ The algae biocathode performs better under natural light/dark cycles.
- Increasing initial concentration of organic compound in PMDC did not have a considerable effect on salinity removal but a slight reduction in maximum power density was observed
- Regular renewal of algae medium in the cathode chamber maintains the PMDC performance in long term operating hours
- Salt removal in our system mostly occurred due to the osmosis pressure than current transfer. Future Studies should focus on improving current density.
- Continues flow mode biocathode PMDC allows for Algae growth, nutrient removal as well as electricity generation and desalination
- Microbial Analysis confirmed the growth of electroactive bacteria in our cells.

Anammox biocathode in MDC(ANXMDC)

- Anammox Reaction
- ANaerobic AMMonium Oxidation (1999)

• $1.00 \text{ NH}_4^+ + 1.32 \text{NO}_2^- + 0.066 \text{HCO}_3^- + 0.13 \text{H}^+ \rightarrow 1.02 \text{ N}_2 + 0.26 \text{NO}_3^- + 0.066 \text{CH}_2 \text{O}_{0.5} \text{NO}_{.15} + 2.03 \text{ H}_2 \text{O}$

Compared to Conventional nitrification/denitrification Reduced 58% of the oxygen requirement 100% of the carbon requirement 83% of the biosolids production By-products do not include greenhouse gases

Annamox Microbial Desalination Cell (ANXMDC)

Anodic Reaction : $C_6H_{12}O_6+12 H_2O \longrightarrow 6HCO_3^-+30H^++24\bar{e} E=-0.3919$ Cathodic Reaction : $HNO_2^-+ 3H^++3e \longrightarrow 1/2N_2 +2 H_2O E=0.98 v$ $2NO_3^-+12H^++10e \longrightarrow N_2+6H_2O E=0.706 V$

- Electricity production
- Desalination of sea water
- Wastewater treatment, nutrient Removal
- Self Sustainable system, less bioslids production
- Less energy consumption

Objectives

- To Prepare the culture for growing Anammox bacteria in Anaerobic condition
- To test the proof of concept by using Anammox bacteria as biocathode in Microbial Desalination Cell (MDC)
- To evaluate Nitrogenous compounds removal and anammox reaction and the efficiency of Anammox-MDC
- To study the effect of increase in ammounium concentration and adaptation process of anammox bacteria

Material and Methods

Anode

- Microbial consortium from wastewater treatment plant in Starkville
- medium used in anode chamber was a synthetic waste water containing: Glucose 468.7 mg/l, KH₂PO₄(4.4 g/l), K₂HPO₄(3.4 g/l), NH₄Cl(1.5 g/l), MgCl₂ (0.1 g/l), CaCl₂ (0.1 g/l), KCl(0.1 g/l), MnCl₂4.H₂O(0.005 g/l), and NaMo.O₄.2H₂O(0.001 g/l)

Cathode

- Anammox Source from Hampton Roads Sanitation District in Virginia
- Growing at T=35 C^o, 150 rpm
- Anammox media: NH₄Cl(382 mg/l), NaNO2(493 mg/L), KHCO₃ (200 mg /L) KH₂PO₄ (27 mg /L), FeSO₄×7H₂O (9.0 mg /L), EDTA (5.0 mg /L), MgSO₄ ×7H₂O,(240 mg /L), CaCl₂×2H₂O, 143(mg/L),300 μl of trace metal solution.

Material and Methods

Anammox growth

Anammox MDC

- Plexiglass rectangular-shaped, V=70 ml
- Carbon cloth as electrodes
- Cation exchange membrane (CEM, CMI 7000, Membranes international)
- Anion exchange membrane(AEM, AMI 7001, Membranes international)
- Volume of desalination chamber=30 ml
- Initial NaCl=10 g/l

Anammox growth in shaker

Nutrient removals

Nitrite/Ammonium consumption

• ANXMDC

 $CE = \frac{\sum I(A) * t(s)}{96485 \left(\frac{C}{\text{mole } e^{-}}\right) * COD_{\text{removed}}(\text{mole}) * 4\left(\frac{\text{mole } e^{-}}{\text{mole } O_{2}}\right)}$

CE Test 1	CE Test 2	CE Test 3
3.4%	6.02%	52.72%

• ANXMDC

• Ammonium and Nitrite removal in cathode chamber of ANXMDC.

Effect of Ammonium increase and Nitrite decrease on Annamox

- DO=2 mg/l, 7<pH<7.8
- Ammonium (300, 500, 600 mg/l)
- Nitrite (60, 30, 0 mg/l)

• Effect of Organic carbon on Anammox

Conclusion

- Anammox bacteria can act as a novel anaerobic biocathode in MDCs with simultaneously contributing to Energy production, Salt removal, organic carbon removal and nitrogenous Compound removal.
- The Anaerobic condition in the biocathode allows for efficient performance of MDC for long operating time.
- Series of batch experiments will improve the formation of biofilm on the electrodes that will result in better performance of the ANXMDC.
- Gradual increase of ammonium and decrease of nitrite at low DO and pH less than 8 allow for growth of Ammonium oxidizing bacteria to remove ammonium by anammox bacteria

Future Work

- Direct transfer of treated wastewater from anode chamber of a ANXMDC to cathode chamber for advanced treatment of Ammonium and to be used as catholyte of the cathode chamber.
- Microbial analysis of samples during ammonium adaptation and ANXMDC process
- Conducting continues flow ANXMDC whereas wastewater in the anode and then cathode chamber will be continuously fed.
- Larger scale application with new configuration

Acknowledgement

- Dr. Veera G. Gude \bullet
- **Bagley College of Engineering** •
- **Civil and Environmental Engineering Department** \bullet
- **EPA P3 program**
- **U.S. Department of Agriculture(Microbial Analysis)** •
- **Dr. John Brooks** •
- Ms. Renotta Smith •
- Hadi Khani •

EGE OF ENGINEERING

