

Comparison of advanced oxidation processes for emerging contaminants removal

1st International Electronic Conference on Water Sciences

15-29 November 2016 chaired by Prof. Dr. Wilhelm Püttmann

CIVIL & ENVIRONMENTAL ENGINEERING

Ms. Sara Fast, MS Dr. Veera Gnaneswar Gude November 10, 2016

sponsored by

water

OUTLINE

- Introduction
- BackgroundEmerging Contaminants
- Advanced Oxidation Processes
- Analytical Methods and Techniques
- Results
- Process Engineering Parameters
- **Environmental Parameters**
- **Economic and Social Parameters**
- Discussion

INTRODUCTION

- Emerging contaminants are difficult to remove using traditional water and wastewater treatment methods
- EDCs and PPCPs are potentially harmful to humans and wildlife
- Advanced oxidation processes have been proven successful
- Multiple parameters must be considered when choosing the best method
- Technical competence is not the only essential element
- Various AOPs were compared by ranking numerous parameters
- The processes with the highest average ranking indicates most rational options

BACKGROUND

4

EMERGING CONTAMINANTS

- Relatively unknown
- Limited regulations
- Difficult to remove from water and wastewater
- Pose threat through introduction to aquatic environments and drinking water
- Occur on ng/L to µg/L scale

ENDOCRINE DISRUPTING COMPOUNDS (EDCS)

Table 1: Examples of EDCs

Contaminant	Description		
Bisphenol A	Preservative, Plastic Component		
Butylated Hydroxyanisole	Food Preservative		
DDT	Pesticide		
Atrazine	Pesticide		
17β-estradiol	Steroid Hormone		
Estrone	Steroid Hormone		
Testosterone	Steroid Hormone		
Cadmium	Heavy Metal		
Mercury	Heavy Metal		
Lead	Heavy Metal		
Arsenic	Heavy Metal		
Musk Ketone	Fragrance		
Hexabromocyclododecane	Flame Retardant		
Caffeine	Stimulant		

- Effect humans and aquatic wildlife
 - Reproduction
- Growth
- Metabolism
- Cause birth defects and tumors
- Introduced through urban and agricultural runoff, landfill leachates, and concentrated animal feeding operations

PHARMACEUTICAL AND PERSONAL CARE PRODUCTS (PPCPS)

- Widespread use
- Include:
- Pharmaceutical drugs
- Cosmetics
- Fragrances
- Food supplements
- Introduced mainly through sewage effluent and hospital and animal wastes
- Effects:
 - Chronic effects unknown
 - Antibiotic resistance

Table 2: Examples of PPCPs

Contaminant	Description
Acetaminophen	Analgesic
Ketoprofen	Analgesic
Carbamazepine	Anticonvulsant
Ibuprofen	Anti-Inflammatory
Triclosan	Antibacterial
Ciprofloxacin	Antibiotic
Acridine	Antiseptic
Bezafibrate	Fibrate Drug
Dilantin	Antiepileptic
Nicotine	Stimulant, Insecticide

7

ADVANCED OXIDATION PROCESSES (AOPS)

- Effective in degrading emerging contaminants
- Theoretically broken down into harmless components
- Must consider degradation products
- Organic compounds are oxidized into CO₂, H₂O, and mineral acids
- Production of hydroxyl radicals that react easily with organic compounds due to unpaired electron
- Common oxidants
- Ozone (O₃)
- UV
- Hydrogen peroxide (H₂O₂)

ADVANCED OXIDATION PROCESSES (AOPS)

 O_3 H_2O_2/O_3 O_3/UV H_2O_2/UV TiO₂ photocatalysis Fenton reaction

9

ANALYTICAL METHODS AND TECHNIQUES

Table 3: Ranking System

Ranking System			
Value	Description		
5	Very High		
4	High		
3	Moderate		
2	Low		
1	Very Low		

- In order to accurately compare each process, performance was quantified
- Rankings were assigned to each process for each parameter
- Higher values indicate improved performance
- Rankings were then averaged across each parameter category

RESULTS

Process Engineering Environmental Economical and Social

PROCESS ENGINEERING PARAMETERS

MECHANICAL RELIABILITY

Mechanical soundness

Least number of "moving parts"

Ozone

- Ozone generator and ozone gas diffuser require routine cleaning and inspection
- Sparger fouling

• UV

- Lamp replacement
- Routine inspection
- Photocatalysis, Fenton
- High maintenance
 - pH
 - Mixing
 - TiO₂, iron

Table 4: Mechanical Reliability Ranking

Mechanical Reliability			
AOP	Ranking		
O ₃	4		
H_2O_2/O_3	4		
O ₃ /UV	3		
H_2O_2/UV	3		
TiO ₂	2		
Fenton	2		

PROCESS RELIABILITY

Table 5: Process Reliability Ranking			
Process F	Reliability		
AOP Ranking			
O ₃	4		
H_2O_2/O_3	4		
O ₃ /UV	4		
H_2O_2/UV	4		
TiO ₂	2		
Fenton	2		

- Ability to consistently produce adequate effluent
- Older techniques have a proven history of reliability
- Photocatalysis and Fenton process are more modern and less tested
 - TiO₂ slurry and precipitated iron effect effluent (requires removal)

FLEXIBILITY

- Ability to adjust to influent flow rate
- Older technologies have experience in adjusting conditions
- Factor of safety has been implemented
- Chemical dosages can easily be adjusted
- Semi-batch reactors in photocatalysis and Fenton

Table 6: Flexibility Rankings Flexibility AOP Ranking O_3 4 H_2O_2/O_3 4 O₃/UV 4 H_2O_2/UV 4 TiO₂ 3 3 Fenton

ADAPTABILITY

Table 7: Adaptability Rankings

Adaptability				
Adaptability				
AOP	Ranking			
O ₃	3			
H_2O_2/O_3	3			
O ₃ /UV	2			
H_2O_2/UV	2			
TiO ₂	3			
Fenton	3			

- Ability to adjust to influent water quality
- Turbidity can effect UV penetration
- Ozone diffusers and UV lamp sleeves are subject to scaling
- Nitrate and iron reduce degradation efficiency of UV processes
- Photocatalysis produces hydroxyl radicals quickly
- Adapts well
- Fenton process is pH sensitive

ENERGY CONSUMPTION

Large contributor to total cost

- Relation to resource depletion, CO₂ emissions
- UV lamps
- Energy intensive
- Can be mitigated with proper chemical additions
- Onsite O₃ generation
- Fenton process only includes simple pumping requirements

Table 8: Energy Consumption Rankings

Energy Consumption				
AOP Ranking				
O ₃	2			
H_2O_2/O_3	3			
O ₃ /UV	2			
H ₂ O ₂ /UV	4			
TiO ₂	2			
Fenton	5			

AOT	Source/Water	Initial Concentration (µg/L)		Specific Energy Consumption (kWh/m ³)		Reference		
		Geosmin	MIB	Geosmin	MIB			
UV/O3	Fish Farm (spiked)	0.0042-0.0067	0.0032-0.0087	19.00	8.00	Klausen & Gronborg		
UV/H ₂ O ₂	Fish Farm (spiked)	0.0042-0.0068	0.0032-0.0088	16.00	13.00	Klausen & Gronborg		
		Oxalic Acid	Dichloroacetic Acid	Oxalic Acid	Dichloroacetic Acid			
TiO ₂ /O ₃	Synthetic	126	129	17.0	50.0	Mehrjouei, et al.		
TiO ₂ /UVA/O ₂	Synthetic	126	129	63.0	350.0	Mehrjouei, et al.		
TiO ₂ /UVA/O ₃	Synthetic	126	129	7.0	24.0	Mehrjouei, et al.		
O ₃	Post MBR Wastewater	-	-	11	.93	Chong, et al.		
O ₃ /UV	Post MBR Wastewater	-			6.15			
H ₂ O ₂ /UV	Post MBR Wastewater	-			0.23			
Photocatalysis	Post MBR Wastewater	-	-	7.09		Chong, et al.		
				80W Lamp	40W Lamp			
UV/HOC1	Tap Water	1.	00	0.32	0.16	Sichel, et al.		
UV/CIO ₂	Tap Water	1.	00	0.32	0.16	Sichel, et al.		
UV/H ₂ O ₂ (UV mp lamps)	Tap Water	1.	1.00 0.5		Sichel, et al.			
UV/H ₂ O ₂ w/ RO	MF/RO Permeate	-	-	0.62		James, et al.		
UV/H2O2 w/ MF	MF/RO Permeate	-			- 0.93		.93	James, et al.
UV/H2O2 w/ AC	MF/RO Permeate	-	-			James, et al.		
O _{3 (2 mg/l)}	WWTP Effluent	0.001-0.503		0.03		Kim & Tanaka		
O _{3 (4 mg/L)}	WWTP Effluent	0.001-0.503		0.06		Kim & Tanaka		
O _{3 (6 mg/L)}	WWTP Effluent	0.001-0.503		0.09		Kim & Tanaka		

Γ	O _{3 (2 mg/l)} /UV _{65W}	WWTP Effluent	0.001-0.503	1.06	Kim & Tanaka
	O _{3 (4 mg/L)} /UV _{65W}	WWTP Effluent	0.001-0.503	1.09	Kim & Tanaka
	O _{3 (6 mg/L)} /UV _{65W}	WWTP Effluent	0.001-0.503	1.12	Kim & Tanaka
	UV(10W)	Hospital WW	0.4	10.00	Kohler, et al.
	UV(2.5W)	Hospital WW	0.4	6.00	Kohler, et al.
	0.83 gH ₂ O ₂ L ⁻¹	Hospital WW	0.4	2.00	Kohler, et al.
	1.11 gH ₂ O ₂ L ⁻¹	Hospital WW	0.4	2.00	Kohler, et al.
	Conventional GAC	NF/GAC Plants	-	0.16	Bonton, et al.
	Nanofiltration	NF/GAC Plants	-	0.55	Bonton, et al.

OVERALL PROCESS ENGINEERING RESULTS

Table 9: Process Engineering Summary

	AOPs					
Process Engineering Parameters	O ₃	H_2O_2/O_3	O_3/UV	H_2O_2/UV	TiO ₂	Fenton
Mechanical Reliability	4	4	3	3	2	2
Process Reliability	4	4	4	4	2	2
Flexibility	4	4	4	4	3	3
Adaptability	3	3	2	2	3	3
Energy Consumption	2	3	2	4	2	5

Table 10: Process Engineering Average Rankings

Average					
AOP	Ranking				
O ₃	3.4				
H_2O_2/O_3	3.6				
O ₃ /UV	3				
H ₂ O ₂ /UV	3.4				
TiO ₂	2.4				
Fenton	3				

ENVIRONMENTAL PARAMETERS

CONTRIBUTION TO CLIMATE CHANGE

- Reduction in factors leading to climate change is essential
- Emission of Greenhouse gases:
 Polar melt
 - Altered wind and ocean patterns
 - Sea level rise
 - Change in seasons
- CO₂ emissions
 - Related to energy consumption
 - Also released during oxidation
- High ranking indicates low emissions

Table 11: Climate Change Ranking

_				
Climate Change				
AOP	Ranking			
O ₃	2			
H_2O_2/O_3	3			
O ₃ /UV	2			
H_2O_2/UV	4			
TiO ₂	2			
Fenton	5			

EUTROPHICATION

Γa	able 12: Eutrophication Rankings										
	Eutrophication										
	AOP	Ranking									
	O ₃	5									
	H_2O_2/O_3	5									
	O ₃ /UV	5									
	H_2O_2/UV	5									
	TiO ₂	5									
	Fenton	5									

- Excess nutrients (nitrogen and phosphorus) can cause harmful aquatic conditions
- Hypoxia, algal blooms
- All discussed processes do not release additional nutrients
- Preceded or proceeded by specific nutrient removal process

TERRESTRIAL AND AQUATIC TOXICITY/DEGRADATION PRODUCTS

- Chemicals and degradation products can influence effluent water quality
- Ozonation produces bromate
- UV has the advantage of no chemical usage
- Photocatalysis requires catalyst removal
- The Fenton process requires iron removal
- All processes potential form degradation products

Table 13: Toxicity Rankings

Toxicity									
AOP	Ranking								
O ₃	2								
H_2O_2/O_3	3								
O ₃ /UV	2								
H ₂ O ₂ /UV	3								
TiO ₂	2								
Fenton	2								

OVERALL ENVIRONMENTAL RESULTS

10010	1 1. 6119			initial y						
	AOPs									
Environmental Parameters	O ₃	H_2O_2/O_3	O ₃ /UV	H ₂ O ₂ /UV	TiO ₂	Fenton				
Climate Change	2	3	2	4	2	5				
Eutrophication	5	5	5	5	5	5				
Toxicity	2	3	2	3	2	2				

Table 14⁻ Environmental Summary

Table 15: Average Environmental Rankings

Average									
AOP	Ranking								
O ₃	2.25								
H_2O_2/O_3	2.75								
O ₃ /UV	2.25								
H_2O_2/UV	3								
TiO ₂	2.25								
Fenton	3								

ECONOMIC AND SOCIAL PARAMETERS

PUBLIC ACCEPTANCE

Approval of public is critical

- Newer technologies tend to be viewed more negatively than commonly used processes
- Older processes have had the opportunity to prove success through pilot scale and full scale operations
- Photocatalysis and the Fenton process introduce inorganic compounds (TiO₂ and iron) that may be viewed negatively

Table 16: Public Acceptance Rankings

Public Ac	Public Acceptance									
AOP	Ranking									
O ₃	4									
H_2O_2/O_3	4									
O ₃ /UV	4									
H_2O_2/UV	4									
TiO ₂	2									
Fenton	2									

EASE OF USE

T	Table 17: Ease of Use Rankings										
	Ease of Use										
	AOP	Ranking									
	O ₃	4									
	H_2O_2/O_3	4									
	O_3/UV	4									
	H_2O_2/UV	4									
	TiO ₂	2									
	Fenton	2]								

- More complicated techniques introduce more opportunity for error
- Skilled personal can increase operational costs
- Commonly used processes have had time to correct problems
- Newer technologies possess level of uncertainty
- Photocatalysis also requires difficult catalyst recovery

ECONOMIC FEASIBILITY

Table 18: Cost Summary										
AOP	Cost \$/1000 gal	Amortized Annual Capital Cost	Annual O&M Costs							
O ₃	1.2023	7.55E+04	9.16E+04							
O ₃ /UV	38.648	1.12E+06	4.25E+06							
H ₂ O ₂ /UV	308.482	2.36E+06	4.05E+07							
TiO ₂	8648.79	2.51E+08	9.51E+08							
Fenton	14.2829	-	1.99E+06							

Table 19: Capital Cost E	Breakdown
Factors	Percent (%)
Piping, Valves, Electrical	30
Site Work	10
Engineering	15
Contractor O & P	15
Contingency	30
Total	100

•															

- Labor rate = \$80/hour
- Analytical labor rate = \$200/hour
- Electricity rate = \$0.08/kWh
- Amortization occurs over 30 years at a rate of 7%
- Mahamuni & Adewuyi, 2014

ECONOMIC FEASIBILITY

- Can be considered one of the most important/limiting factors
- Largely related to energy consumption
- Older methods tend to be more cost efficient
- Photocatalysis shows very poor performance
- UV lamps, expensive catalyst, maintenance

Table 20: Economic Feasibility Rankings

Economic Feasibility									
AOP	Ranking								
O ₃	5								
H_2O_2/O_3	4								
O ₃ /UV	4								
H_2O_2/UV	3								
TiO ₂	1								
Fenton	4								

OVERALL ECONOMIC AND SOCIAL RESULTS

Table 21: Economic and Social Summary

	AOPs									
Economic and Social Parameters	O ₃	H_2O_2/O_3	O_3/UV	H_2O_2/UV	TiO ₂	Fenton				
Public Acceptance	4	4	4	4	2	2				
Ease of Use	4	4	4	4	2	2				
Economic Feasibility	5	4	4	3	1	4				

Table 22: Average Economic and Social Rankings

Average										
AOP	Ranking									
O ₃	4.33									
H_2O_2/O_3	4.00									
O ₃ /UV	4.00									
 H_2O_2/UV	3.67									
 TiO ₂	1.67									
Fenton	2.67									

Figure 3: Economic and Social Parameter Summary

COMPREHENSIVE RESULTS

	AOPs							
Parameters	O ₃	H_2O_2/O_3	O ₃ /UV	H ₂ O ₂ /UV	TiO ₂	Fenton		
Mechanical Reliability	4	4	3	3	2	2		
Process Reliability	4	4	4	4	2	2		
Flexibility	4	4	4	4	3	3		
Adaptability	3	3	2	2	3	3		
Energy Consumption	2	3	2	4	2	5		
Average Engineering	3.4	3.6	3	3.4	2.4	3		
Climate Change	2	3	2	4	2	5		
Eutrophication	5	5	5	5	5	5		
Toxicity	2	3	2	3	2	2		
Average Environmental	2.25	2.75	2.25	3	2.25	3		
Public Acceptance	4	4	4	4	2	2		
Ease of Use	4	4	4	4	2	2		
Economic Feasibility	5	4	4	3	1	4		
Average Economic and Social	4.33	4	4	3.67	1.67	2.67		
Comprehensive Average	3.33	3.45	3.08	3.36	2.11	2.89		

Table 23: Comprehensive Rankings and Averages

35

COMPREHENSIVE RESULTS

Figure 4: Comprehensive Parameter Category Comparison

DISCUSSION

POTENTIAL FOR DISPROPORTIONATE COMPARISON

- Analysis included both novel techniques and more commonly used processes
- Older processes often had an advantage
- The same study completed in the future could produce different results as methods progress
- Variation in constituent matrix
- Different studies considered different contaminants
- Some contaminants are more difficult to degrade than others
- This gives unequal comparison
 - One process may work well for one contaminant, which should not be compared to a process degrading a more recalcitrant contaminant

An examination of all processes with multiple sources would be advantageous

ADDITIONAL DATA REQUIREMENTS

Table 24: Cost Breakdown

	O&M Cost Breakdown											
	AOP	Part Replacement	Labor	Analytical	Chemical	Electrical	Total					
	O ₃	5.10E+02	4.54E+04	4.16E+04	0.00	4.09E+03	9.16E+04					
	O ₃ /UV	1.28E+06	5.94E+04	7.28E+04	0.00	2.84E+06	4.25E+06					
I	H_2O_2/UV	2.78E+06	3.89E+04	3.12E+04	3.15E+07	6.17E+06	4.05E+07					
	TiO ₂	2.95E+08	3.89E+04	3.12E+04	1.56E+04	6.56E+08	9.51E+08					
	Fenton	0.00	4.77E+04	3.12E+04	1.91E+06	0.00	1.99E+06					

 Further study of economic feasibility was deemed necessary

 Breakdown of O&M costs revealed that photocatalysis is significantly more expensive due to electricity costs

 Degradation products are also a concern

- Limited information available
- Additional research is needed

PROPOSED RANKING SYSTEM ALTERATIONS

- All parameters were considered to have equal worth
- Some aspects may be more important than others (economic feasibility)
- A study using parameters weighted for importance or relevance would be more accurate
 - Importance could vary from user to user, however
- Amount of detail was limited by five point scale
- All rankings were relatively similar due to small numerical range
- A ten point scale would allow for further detail and a more accurate study

CONCLUSIONS

- After comparing six AOPs across three parameter categories:
- H₂O₂/O₃ presented the highest average ranking (3.45)
- TiO₂ photocatalysis earned the lowest ranking (2.11)
- This was largely due to high energy consumption and electricity costs
- The ranking system revealed both strengths and weaknesses for each process
- More established processes performed better overall
- Reinforces need for pilot scale and full scale studies
- Confirms need for studies in energy consumption and economic feasibility
- Revealed faults in ranking system