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Abstract: A model for short term water demand forecasting is proposed. The model is structured in 9 
order to provide at each hour the water demand forecast for the next 24 hours using coefficients 10 
estimated according to a short moving window of previously observed data. More in details, the 11 
hourly forecast is performed in two steps: in the first step the average water demand for the next 24 12 
hours (Q24) is forecasted multiplying the average water consumption observed in the last 24 hours 13 
by a previously estimated coefficient; in the second step, the water consumption of each of the next 14 
24 hours is forecasted multiplying the forecasted Q24 by hourly coefficients. The coefficients’ 15 
values (both the one used to forecast the Q24 and those used to forecast the hourly values) are 16 
updated at each hour on the basis of the water demands observed in the last n (e.g. n=4) weeks. The 17 
model is applied to a real case study; the analysis of the results, and their comparison with those 18 
provided by another short term water demand forecasting model already presented in the scientific 19 
literature, highlights that the proposed model provides an accurate and robust forecast, resulting in 20 
an efficient tool for real time management of water distribution networks requiring a very small 21 
effort for its parameterization. 22 
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1. Introduction 26 

Water demands are the forcing driver of the Water Distribution Networks (WDNs) and their 27 
reliable forecast may represent a useful decision support tool for WDN management. On the basis of 28 
the forecasting time horizon considered, water demand forecast can be classified as a) long term 29 
forecast, characterized by a forecasting time horizon of a decade or more, b) medium term forecast, 30 
characterized by a forecasting time horizon of several months up to one year and finally c) short 31 
term water demand forecast, characterized by a forecasting time horizon of several days up to one 32 
week. Focusing the attention on the last category, i.e. short term forecast, several models have been 33 
recently proposed in the scientific literature (see, for example, [1], [2] and [3], in order to get a review 34 
of these models). The short term water demand forecasting models differ in many aspects, mainly in 35 
terms of forecasting time-step, input data, and approach used to perform the forecast. 36 

The forecasting time-step varies from one hour (e.g. [4]) up to one day (e.g. [5]). In the scientific 37 
literature there are also models with multiple forecasting time-step, in which for example both the 38 
daily and hourly water demand are forecasted, as in [6]. As regards the input data, the majority of 39 
short term water demand forecasting models is mainly based on the time series of observed data 40 
related to the previous weeks/months/years. However, in some cases, climate factors such as 41 
humidity and temperature, are also used as input (e.g. [7]). Finally, as far as the approach concerns, 42 
many models recently proposed in the scientific literature are based on data-driven techniques such 43 
as Artificial Neural Network (e.g. [8]), Fuzzy Logic (e.g. [9]),  Project Pursuit Regression, Random 44 
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Forests and Multivariate Adaptive Regression Splines (e.g. [4]). Other models are on the contrary 45 
based on the representation of periodic behaviors that typically affect water demand, coupled with 46 
an analysis of time series, and thus can be in general indicated as pattern based models (e.g. [6]). 47 

It is to be pointed out that the model’s parameterization is strictly connected with the structure 48 
and the approach of the model itself. The models mentioned above are based on structures that can 49 
be more or less simple or complex, but whose parameters have always to be defined before the 50 
model application. For example, ANNs models, by their very nature, need a calibration of weights 51 
and biases; this calibration can be done using time series of observed data that have to be sufficiently 52 
long in order to efficacely train the neural network, taking into account that the water demands can 53 
vary significantly through the year. The same consideration applies for the pattern based models. 54 
For example the model proposed by [6] needs at least one year of observed data in order to define 55 
periodic behaviors, namely seasonal fluctuations, as well as for the characterization of the daily 56 
consumptions patterns which are variable through the seasons. 57 

The need of having at least one long time-series of observed data of the water demand of the 58 
network to which the forecasting model has to be applied could represent a limiting factor to be 59 
taken into account in the choice of the forecasting model itself. 60 

In this article a short term water demand forecasting model, which uses a short moving 61 
window of previously observed data as input is presented. In fact, the model is structured in order 62 
to use, as input data, the hourly data of consumption observed during some weeks before the 63 
forecasting time; as output, it provides the hourly water demands forecast for the next 24 hours. As 64 
shown in the next sections, the strengths of the proposed model are the simple structure and the 65 
substantial absence of a calibration period. In the next sections we present the structure of the 66 
proposed forecasting model (section 2) and its application to a real case study (section 3). The results 67 
obtained are analyzed and compared with those provided by another short term water demand 68 
forecasting model already proposed in the scientific literature. Conclusive considerations are finally 69 
provided in section 4. 70 

2. The Proposed Model 71 

The proposed short term water demand forecasting model is based on the observation that 72 
water consumptions are typically characterized by periodic behaviors at different time scales. In fact 73 
daily average water demands have typical seasonal fluctuations, with increasing consumptions in 74 
the warmest months and decreasing consumptions in the coolest ones. Hourly water demands, 75 
during the day, have typical fluctuations that denote the users’ daily routine. In particular, as 76 
regards to residential users, water demands have a daily patter characterized by peaks in the early 77 
morning and in the evening, and in general they shows low values during the night and a 78 
fluctuating trend during the rest of the day. The patterns of hourly water demands observed during 79 
the day may be distinguished on the base of the considered day of the week (the day “type”). For 80 
example, on Mondays (or Tuesdays, Wednesdays,..) the consumptions of residential areas or 81 
districts show similar patterns; indeed these patterns are quite similar to those of the other weekdays 82 
but they differ from those of the weekend.  83 

Another important aspect in the characterization of short term water consumptions is 84 
connected to the persistence of consumptions themselves. In fact, analysis of water consumptions 85 
time-series having hourly or daily time step, typically shows that the values of the correlation 86 
coefficient at lag 1 or 2 are significant [6]; this indicates that increasing trend of the consumption of 87 
the current day typically is associated with rather high average daily consumption for the next day. 88 

The proposed model is based on these two aspects. In fact, in order to forecast the hourly water 89 
demands for the next K=24 hours, the model uses the information from consumer data observed in 90 
the last 24 hours prior to the forecasting time instant. Furthermore the model uses the information 91 
related to the same hours of the day of the forecasting time window but observed on the same day 92 
“type” in the n weeks earlier. In particular the model is structured in two modules, so that in the first 93 
one the average water demand for the next 24 hours is evaluated, and then in the second module, 94 
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using the prior evaluation, the average hourly water demand is forecasted for each of the 24 hours 95 
ahead.  96 

More in details, let us assume the week as made up by 7 different day “type” each one 97 
characterized by a particular hourly consumption pattern. With reference to Figure 1, let assume an 98 
hourly time-step and let i (with i = 1,2,…,365) be the generic day of the year and j the generic hour of 99 
the day (with j = 1,2,…,24). Furthermore, let us indicate with t the generic hour of the year (starting 100 
from the 1st January) in which the forecast is made. Assuming that the forecast is made at the hour j 101 
of the day i, t (the forecasting time) is defined as 24 1t ( i ) j    . Finally k indicates the forecasting 102 

lead-time (with k = 1,2,....,K=24) and is counted starting from t. 103 

 

Figure 1. Time structure of the proposed model αβ_WDF. 104 

As noted above, consumptions are characterized by different trends in the 7 days of the week, 105 

and thus it can be assumed that the days   7  14  21i, i , i , i ,..   belong to the same “type” (for 106 

example, all of them are Tuesdays). Therefore, being 24 1t ( i ) j     the forecasting time, it is 107 

possible to identify the n hours corresponding to the same hour j of the day for which the forecast is 108 
performed but which belongs to the same “type”of the days in the n weeks before the forecasting 109 
time t.  110 

The water demand forecast is performed in the following way. At hour t the average water 111 

demand tD  for the next K=24 hours is evaluated as: 112 

 
24t t tD D     (1) 113 

where 
24tD 

 is the average consumption observed in the 24 hours prior to the forecasting time t 114 

(that is from t-24 up to t) and 
t  is a coefficient which has a specific value for the forecast horizon of 115 

24 hours which belong at hour t. This coefficient is fixed as mean value of the ratio of the average 116 
water consumptions observed in the 24 hours after each of the n hours corresponding to the 117 
forecasting time but belonging to the previous n weeks, and the average water consumptions 118 
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observed in the 24 hours before each of these n hours (i.e. 
168tD 

 and 
168 24tD  

, 
336tD 

 and 
336 24tD  

119 

etc. shown in Figure 1).  120 
Once the average water demand 

tD of the K=24 hours following the hour t is estimated, the 121 

hourly water demand 
t kD 

 corresponding to hour t+k is forecast as: 122 

 t k t ,k tD D     (2) 123 

where
t ,k is a coefficient related to the specific lead-time k in the horizon of K=24 hours that starts at 124 

hour t. As 
t ,

t ,k  is evaluated on the basis of the moving window’s data. More in details, the n 125 

hours having the same characteristics (same hour j of the day and same day “type”) of the hour t+k 126 
for which the model is forecasting the water demand but which belong to the previous n weeks are 127 
identified (i.e. 

168t kD  
, 

336t kD  
,… etc. shown in Figure 1), and 

t ,k  is evaluated as the mean value 128 

of the ratios between the water consumptions observed in these hours and the average water 129 
consumptions observed in the 24 hours including these hours previously identified (i.e. 

168tD 
, 130 

336tD 
 etc. shown in Figure 1). 131 

It must be pointed out that, for every forecasting time-step t, the model calculates 24 values of 132 
the coefficient 

t ,k , one for each forecasting lead-time k (k = 1, 2,...., K=24). 133 

Finally, it is worth noting that the coefficients
t and

t ,k contain the information characterizing 134 

the water demand of a certain day “type” and of a certain hour. These coefficients are continuously 135 
updated as they are evaluated on a moving window that ends at the forecasting time-step t and 136 
moves forward with it. Clearly the moving window has to be wide enough to allow a steady 137 
evaluation of the coefficients but in the meantime its length has to be limited up to a maximum of 138 
one or two months in order to take into account the consumption’s fluctuations connected to the 139 
seasonal variation. In fact, using a wider window (e.g. 6 months) if the forecasting time-step occurs 140 
in a summer day, the corresponding coefficients would be evaluated on the basis of winter data of 141 
consumption too; in this way the seasonal fluctuations could not be properly taken into account. 142 
Another advantage given by the use of a narrow moving window is that the model can be applied 143 
after only the n weeks required in order to gather the consumption’s data. In fact, this model does 144 
not require a long calibration data set, as many other models previously mentioned, and operatively 145 
it can be used immediately after collecting few weeks of observed water consumptions. 146 

3. Case Study 147 

The proposed model, hereafter named αβ Water Demand Forecasting model (αβ_WDF) is 148 
applied to the real case study of Castelfranco Emilia (Italy). The Water Distribution Network of 149 
Castelfranco Emilia serves about 23000 inhabitants and it is entirely fed by a tank equipped with a 150 
flow measurement device, which provides the hourly data of the total consumption of the town, 151 
inclusive of the leakages. More in details, the hourly consumption data of the years 1998 and 2000 152 
were available. The same case study was used in [6] in order to apply and test the model the short 153 
term pattern based water demand forecasting model, named Patt_WDF. The results of Patt_WDF 154 
are used in this paper as a basis for comparison and to evaluate the accuracy of the proposed model. 155 
More in details, the evaluation of the models’ performances was done considering separately the 156 
different forecasting time horizon and using the MAE% index defined as: 157 

 
1

1
% 100

z
i

i obs

e
MAE

z 

    (3) 158 

where z is the number of hours in an year, obs for

ie Q Q    is the error, being obsQ  the value of the 159 

observed hourly water demand and forQ  the value of the forecasted water demand, and obs  the 160 

average value of the observed consumptions. 161 
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It may be reminded that, as observed in the introduction, Patt_WDF is a short term water 162 
demand forecasting model based on an hybrid technique and, as αβ_WDF, it is characterized by a 24 163 
hours forecasting horizon and a hourly time-step. However the Patt_WDF model, unlike the 164 
αβ_WDF model, requires at least one year of hourly observed water consumption’s data in order to 165 
perform the calibration phase. In particular, as we have the hourly observed consumption’s data of 166 
the years 1998 and 2000, the data of 1998 were used to calibrate the Patt_WDF model and those of 167 
2000 are used to validate it. For this reason, even though the αβ_WDF requires only a minimum 168 
calibration to be activated, the results are shown considering separately the two years in order to 169 
allow a fair comparison with the Patt_WDF’s results. 170 

4. Analysis of the Results and Conclusions 171 

Figure 2 shows the values of the MAE% index obtained considering the water demand forecast 172 
for 1, 2,…., 24 hours ahead for both the calibration and validation phases and for both the models. 173 
Analyzing the results obtained with the αβ_WDF model, it can be observed that the forecasting 174 
accuracy is, in general, very good. More in details, the accuracy is greater for short time horizons and 175 
it slightly decreases when the forecasting horizon increases, showing limited variations of the value 176 
of MAE%. In fact, with reference to year 1998, the value of the MAE% increases from 6% for the 1 177 
hour ahead forecast, up to 7% for the 24 hours ahead forecast. Similarly, with reference to year 2000, 178 
the value of the MAE% increases from 5.5% up to 6.5% (respectively for forecasts made for 1 and 24 179 
hours ahead). 180 

 

Figure 2. Values of the MAE% obtained for both the calibration (1998) and validation (2000) phases. 181 

Comparing the results of the αβ_WDF model with those of the Patt_WDF model, it can be 182 
noticed that in 1998 the Patt_WDF proves to be slightly more accurate than the αβ_WDF model for 183 
all the forecasting time horizons: the MAE% varies from 4.5% for the forecasts made for 1 hour 184 
ahead up to 5.5% for the 24 hours ahead. On the other hand, it can be observed that in year 2000 the  185 
αβ_WDF model is more accurate than the Patt_WDF model: αβ_WDF’s MAE% values are similar to 186 
those obtained by Patt_WDF for forecasts with horizon equal to 1 hour (5% for Patt_WDF and 5.5% 187 
for αβ_WDF) but for all the other forecasting time horizons the αβ_WDF model is much more 188 
accurate. In fact, considering the 24 hours horizon, the MAE% of the Patt_WDF model value is equal 189 
to 9% whereas the MAE% of the αβ_WDF model is equal to 6.5%. 190 

In general, the comparison of the statistical indexes obtained by the two models, for year 1998 191 
and 2000, shows that the performances of the αβ_WDF model are steady through both the years. On 192 
contrary the performance of the Patt_WDF model worsens from 1998 to 2000. This is 193 
understandable, recalling that the Patt_WDF model requires a long calibration dataset (1 year) and 194 
in fact,  the Patt_WDF model show a high forecasting accuracy when applied to the year of 195 
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calibration (1998), which is used to characterize the periodic behaviors that are used as the 196 
forecasting basis of the model. On the other hand, considering a different year, and a rather different 197 
water consumption time series, its performances tend to worsen. On the contrary, the performances 198 
of the αβ_WDF model, which requires a very short time period for setting up the initial 199 
parameterization and is based on coefficients evaluated on a moving window of observed 200 
consumptions, are steady even considering several different years. 201 

In brief, the proposed αβ_WDF model has a good forecasting accuracy through the entire 202 
considered forecasting time horizon (24 hours). Furthermore it does not require any calibration 203 
period, as it is based on the water demands observed in the few weeks prior to the forecasting time. 204 
This peculiarity makes it usable even in those cases in which there are not long time series of 205 
observed values; in fact it can be used right after one or two months of collected data. Finally, still 206 
due to the absence of calibration, the forecasting accuracy remains constant and high even if the 207 
model is applied to several years, making it a robust and effective instrument for managing water 208 
distribution networks.   209 
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