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Abstract: N-BODIPYs (diaminoborondipyrromethenes) were recently described by us for the first time as a new 

family of BODIPY dyes with huge technological potential. We present now a series of unprecedented chiral 

N-BODIPYs, which have been straightforwardly synthesized in a simple one-pot procedure starting from 

parent F-BODIPYs and chiral sulfonamides. The circular dichroism (CD) of the new chiral dyes has been 

measured with the aim of studying the possibility of modulating the CD signal in chiral BODIPYs by simple 

chemical functionalization. 
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1. Introduction 

BODIPYs (boron dipyrromethenes; 4-bora-3a,4a-diaza-s-indacenes) constitute one of the most valuable 

families of technological dyes [1-10]. Nowadays, there is a plethora of available synthetic procedures for their 

direct functionalization, focused on appropriate modulation of key physical (mainly photophysical) properties. 

This ample reactivity allows the derivatization of BODIPYs at their dipyrrin moiety with a great variety of 

pendant functional groups (blue in Figure 1) [3,8,11-20]. However, less synthetic diversity is found when directly 

functionalizing BODIPYs at boron (red in Figure 1) [21-36]. This boron functionalization, virtually restricted to 

O- and C-BODIPYs until recently, has allowed the facile preparation of dyes with enhanced photostability for 

lasing [21-24], with improved water solubility for biological applications [25-27], with boosted energy-transfer 

processes for efficient light collection [19,28-32] or with enhanced chiral perturbation enabling circularly 

polarized luminescence (CPL) [33-36], among other valuable properties. 

 

Figure 1. Some useful chemical transformations in BODIPYs. 
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Recently, de la Moya group has reported a protocol to directly functionalize BODIPYs at boron with two 

nitrogen moieties thus obtaining the first N-BODIPYs (e.g. 1, Figure 2) [37]. Nitrogens with electron withdrawing 

groups (alkyl- or arylsulfonyl) and electron rich dipyrrins (peralkylated) were used to stabilize the 

corresponding diaminoboron-dipyrrin complex. This combination gave place to highly stable N-BODIPYs, 

which additionally turned out to be highly fluorescent [37]. 

 

Figure 2. First N-BODIPY (1) and spiranic chiral O-BODIPY (2) enabling CPL described by de la Moya. 

The new N-BODIPYs show great versatility for chemically functionalizing BODIPYs. Thus, the distinct key 

bonding features of nitrogen compared with those of oxygen (enhanced bond valence and different bond 

directionality) should open up new possibilities for functionalizing BODIPY dyes, allowing an increase in the 

number of pendant moieties near the BODIPY chromophore (from two in O-BODIPYs, up to four different 

residues in N-BODIPYs) [37]. Such versatile and multiple functionalization is of great interest for achieving a 

smarter modulation of the BODIPY photophysics, which should increase the applicability of these dyes as 

advanced photonic platforms, for example in chiroptical applications, a field that has experienced an exponential 

growth in the last years. Thus, circular dichroism (CD) or circularly polarized luminescence (CPL) have found 

application in the improvement and potential development of multiple photonic tools as display devices 

including 3D optical displays, optical storage and processing systems, spintronics-based devices, biological 

probes and signatures, security tags, CPL lasers and enantioselective CPL sensors, among others [38-46]. In this 

chiroptical context, our group described a new simple structural design for developing small organic molecules 

(SOM) enabling CD and CPL from inherently achiral chromophores [33]. This strategy is based on a spiranic 

O-BODIPY, which is chirally perturbed by a 1,1’-binaphtyl unit orthogonally tethered to it in a spiranic fashion, 

providing CPL levels (|glum|) [47] in solution falling into the usual range (10−5 to 10−2) of that obtained from other 

SOMs (2, Figure 2). 

On the basis of the said new design for CPL-SOMs based on BODIPY, exemplified by 2, and taking 

advantage of the easiness of preparation and high stability, fluorescence and chemical versatility of the newly 

discovered N-BODIPYs [37], we decided to prepare a battery of chiral N-BODIPYs and carry out a study on the 

variation of their chiroptical properties with the structural factors. In this preliminary study, the synthesis and 

measurement of CD is accomplished.  

2. Results and discussion 

Three different modulation strategies will be followed to study the influence of the structure on the 

chiroptical properties of chiral N-BODIPYs: (1) the generation of a chiral center at the boron atom itself, (2) the 

use of a diamine moiety with stereogenic carbons attached to the nitrogens and (3) the use of a sulfonamide 

moiety with a conformationally-mobile pending chiral fragment. Additionally, the designed structures will 

present either C1 or C2 symmetry. These variations will make possible to carry out a preliminary study on the 

effect of different factors (distance of the stereogenic elements to the chromophore, molecular symmetry, 

conformational flexibility of stereogenic moieties, etc.) on the CD properties of chiral N-BODIPYs. 

The selected library of easily accessible chiral N-BODIPYs shown in Figure 3 was chosen to comprise the 

above mentioned structural factors. Thus, for example, 3a-c are C2-symmetric structures, which, in principle, is a 

good structural motif to achieve CD [48]. In 3c the chirality has been introduced in the sulfonamide moiety, 

whereas in 3a and b, the chiral center is attached to the nitrogen and thus closer to the central boron atom. On the 

other hand, an asymmetric dipyrrin has been selected to see the influence of a stereogenic boron atom 

(diastereomeric couple 4d). 
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Figure 2. Developed library of chiral N-BODIPYs. Ts = p-toluenesulfonyl (tosyl). 

The selected chiral N-BODIPYs were straightforwardly prepared using the procedure described by de la 

Moya [37] (Scheme 1), starting from the corresponding parent F-BODIPY and a chiral disulfonamide. The 

reaction of formation of the N-BODIPY is a simple one-pot nucleophilic substitution of fluorine by nitrogen 

promoted by boron trichloride (Scheme 1).  

 

 

Scheme 1. Synthesis of chiral N-BODIPYs, exemplified for 3a. 

On the one hand, C2-symmetric N-BODIPYs 3a-c were made from a symmetric F-BODIPY (commercially 

available 2,6-diethyl-1,3,5,7,8-pentamethyl-F-BODIPY, PM567, Figure 4) and a symmetric chiral disulfonamide. 

These sulfonamides were in turn made either by reacting a chiral diamine ((1S,2S)-cyclohexane-1,2-diamine for a 

or (1S,2S)-1,2-diphenylethane-1,2-diamine for b) with p-toluenesulfonyl chloride, or achiral ethane-1,2-diamine 

with (1S)-camphorsulfonyl chloride, for c. 

 

 

Figure 4. Starting F-BODIPYs. 

On the other hand, C1-symmetric N-BODIPYs 3d and 4d were made using either an asymmetric F-BODIPY 

or an asymmetric disulfonamide or both. As starting asymmetric F-BODIPY, easily accessible 

2-ethyl-1,3,8-trimethyl-F-BODIPY [49] (5, Figure 4) was used. For the asymmetric disulfonamide (6d, Scheme 2), 

ethane-1,2-diamine was reacted in two steps, first with one equivalent of p-toluenesulfonyl chloride and then 

with one equivalent of (1S)-camphorsulfonyl chloride, giving place to 6d in 85% yield. 

 

Scheme 2. Synthesis of asymmetric disulfonamide 6d. 



Proceedings 2017, 1, x FOR PEER REVIEW 4 of 7 

 

The CD spectra of the obtained chiral N-BODIPYs were recorded in diluted chloroform solution and the 

corresponding gabs [50] calculated. Except for 3c, all synthesized chiral N-BODIPYs were CD-active (see Table 1). 

Also noteworthy is the high fluorescence of all species, something of a great interest, as it is critical to the 

development of CPL-SOMs. However, no clear conclusions on the relationship between the dye structure and 

the CD properties can be extracted from this preliminary series. 

Table 1. Kuhn´s disymmetry ratio (gabs) for studied N-BODIPYs (10-6 M CHCl3 solution). 

 

 

 

 

Thus, 3a and 3b, both coming from chiral diamines with -stereogenic carbons, are CD-active, 

demonstrating that using easily-available chiral diamines is a good strategy for achieving CD in N-BODIPYs. 

However, the gabs values reached by them are significantly different (Table 1), which could be due to key 

differential conformational and/or steric factors. 

From the CD results for camphor-derived 3c and 3d, it seems that introducing this chiral element in the 

sulfonamide moiety is not a good strategy for achieving CD. Neither when the resulting structure has 

C1-symmetry, nor when it has C2-symmetry. However, the camphor moiety does clearly have an influence on the 

CD of the dye, since diastereomeric 4d and 4d’ show very different values of gabs (Table 1). 

At first, the highest value of gabs for 4d (+1.40) seems to indicate that asymmetric boron is the best structural 

motif for a CD-active N-BODIPY. However, as above-mentioned, there has to be another effect playing, since 

both diastereomers show completely different gabs values. 

3. Conclusion 

A series of unprecedented chiral N-BODIPYs have been straightforwardly synthesized. The measurement of 

the CD signalization of these new dyes shows that they can be CD-active, exhibiting gabs values in the typical 

range of most of the CD-active dyes based on SOM. The interest of this chiroptical property (e.g., in 

high-resolution and chiral sensing), joined to excellent absorption/emission signatures and synthetic 

accessibility, make chiral N-BODIPYs to be potentially interesting for Chiroptics. Nonetheless, further 

investigation related with assessing the influence of the N-BODIPY structure in the dichroic signalization (level 

and sign) is needed to make possible the rational design of future chiral N-BODIPYs with improved properties 

for chiroptics. Is this line, research is being conducted by synthesizing and chiroptically studying (CD and CPL) 

new series of chiral N-BODIPYs. 
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