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Abstract: Phytoestrogens are plant compounds which have generated considerable interests. A 

litany of health benefits including a lowered risk of osteoporosis, breast cancer, and menopausal 

symptoms, are frequently attributed to phytoestrogens but without the knowledge of their side 

effects. We investigate the effects of lipid extracts from the Solanaceae Nicotiana glauca on skeletal 

muscle cells, in relation to apoptosis. Opposite to the effects of 17β-estradiol, the crude extract from 

N. glauca and its sub-extracts induced apoptosis in C2C12 cells. This apoptotic action involved 

caspase 3/7 activation. These data suggest that the traditional use of this medicinal plant could 

affect the skeletal muscle homeostasis. 
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1. Introduction 

In recent years, plants have gained many interests for being the vital sources of the discovery of 

pharmacologically active compounds [1,2]. Compounds from higher plants also called 

phytochemicals, serve as a source of new drugs for treating diverse forms of diseases. However, 

several pharmacological compounds from plants have been traditionally used without the actual 

knowledge of their side effects. In addition, the molecular mechanisms by which plant-derived 

compounds exert their effects are not yet fully understood. 

Among diverse groups of phytochemicals, phytoestrogens have generated considerable 

interests as alternatives for hormone replacement therapy (HRT) or due to its preventative or 

therapeutic actions in carcinogenesis, atherosclerosis, and osteoporosis [3]. 

The phytoestrogens were first identified in the 1940s [4]. These plant compounds have got 

structural similarities with mammalian 17β-estradiol (E2) and are capable of binding to estrogen 

receptors (ERs) [5-7]. Even though phytoestrogens can activate ERs, their effects are approximately 

thousand folds weaker than E2 [8]. They have been shown to possess estrogen like activity as they 

alleviate postmenopausal complaints, increase bone formation and repress adipose tissue similar to 

E2 [9]. Although there are many positive indications that phytoestrogens can fulfil those actions, it 

remains to be proven: controlled interventional studies are lacking, many side effects have not been 

evaluated and many questions remain unanswered. 

As mentioned, the synthesis of molecules structurally and functionally related to the 

mammalian steroid hormones by plants, has been reported [5,6,10,11]. However, their physiological 

role in plants is controversial. Various steroids derived from plant and animal sources have been 



Proceedings 2017, 1, x FOR PEER REVIEW 2 of 13 

 

shown to affect cell growth and tissue differentiation in vascular plant systems. The existence of 

receptor-like molecules as those of animal cells could provide clues into a possible steroid 

mechanism of action. 

 In our previous works, we determined the relative contents of E2, estrone and progesterone 

like-molecules in Solanum glaucophyllum Desf. (Solanum malacoxylon Send.), Lycopersicon esculentum 

(Mill) and Nicotiana glauca (Graham) by competition assays using specific polyclonal antibodies 

against the respective mammalian steroid hormones [5,6,12]. Binding experiments with 

[3H]17β-estradiol in the presence or absence of an excess of the unlabelled steroid showed that the 

Solanaceae organs contain estrogen binding sites. The protein nature of these sites was clearly 

indicated by their sensitivity to trypsin degradation. Likewise, lipid crude extracts from Solanaceae 

were able to compete with [3H]17β-estradiol for binding to the estrogen receptor (ER) from breast 

cancer MCF-7 cells as well as with estrogen binding sites present in this plant species [5,6,12]. 

Skeletal muscle was considered a non-classical estrogen target for a long time, though little is 

known about the effect of estrogens on this tissue. However, in recent years, both ERs have been 

found to be present in mouse, human, and pig skeletal muscle as well as in myoblasts from rat and 

mouse [13-16]. It is now known that estrogens exert actions in skeletal muscle. For example, muscle 

degenerative pathologies like sarcopenia, that is observed in menopausic women, are related to 

decreased levels of estrogens [17]. Also, estrogens have been shown to be an important factor in the 

protection of muscle from exercise-induced muscle damage [18]. Thus, the presence of ERs in 

skeletal muscle tissue and the capacity of phytoestrogens to bind to estrogen receptors, make this 

tissue a target for phytoestrogens actions.  
Adult skeletal muscle increases its size and shows a remarkable capacity to adapt to trauma and 

injury. However, skeletal muscle cells are postmitotic and cannot replicate. Therefore, any increase 

in myonuclear number required for growth or repair of damaged muscle depends on satellite cells, a 

pool of myogenic precursor cells. This distinct population of mononucleated [19,20] was first 

described by Mauro (1961) [21]. They owe their name to their localization under the basement 

membrane but outside the plasma membrane of the muscle fiber. Their colocalization with blood 

vessels [22] places satellite cells in an optimal position to respond to intrinsic signals from both the 

skeletal muscle fiber itself and from changes in the systemic environment. Satellite cells exist in a 

quiescent state after birth and begin to proliferate in response to regulatory factors during 

development and in cases of muscle injury [23-25]. Then, satellite cells are activated in response to 

both physiological stimuli, such as exercise, and to pathological conditions, such as injury and 

degenerative diseases. During development and regeneration, quiescent satellite cells are activated 

and start to proliferate. At this stage, they are often referred to as myogenic precursor cells or 

myoblasts [26]. The interest for us, is the presence of estrogen receptors (ERs) in satellite cells [14]. In 

addition, we demonstrated that E2 abrogates the apoptosis induced by oxidative stress in myoblasts 

through ERs [27]. Furthermore, during steroid-induced muscle growth, the hormone induces 

activation of muscle satellite cells [28]. Thus, this cells group that is relevant for the muscle 

physiology, could be affected by phytoestrogens.  

Apoptosis can be triggered through the mitochondrial pathway or the death receptor-mediated 

pathway, both leading to caspase activation that ultimately results in nucleus condensation and 

DNA fragmentation [29,30]. As mentioned above, plant extracts exert many pharmacological 

functions, including apoptosis in tumor cells [31-33]. These apoptotic effects have been attributed to 

the presence of different compounds like phytosterols in the plant lipid extracts preferentially 

[34-36]. 

It is known that Solanaceae family provide significant amount of phytoestrogens [2,37]. 

Previously, we evidenced the presence of molecules functionally and structurally analogous to E2 in 

lipid extracts of the Solanaceaes [6]. 

The goal of the present study was to investigate the effects of lipid extracts from N. glauca on 

myoblastos, in relation to apoptosis; since apoptosis is a possible cause of diminution of satellite cells 

number in sarcopenia or other myopathies [38]. In addition, our aim was to contribute to the 
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knowledge about the chemical structure of the phytoestrogens present in the lipid fraction of N. 

glauca, responsible of the effects observed on C2C12 cell line.  

2. Material and Methods 

2.1. Materials 

Anti-phospho-Akt (Ser473) and anti-HSP27 antibodies were from Cell Signaling Technology 

Inc (Danvers, MA, USA). 

Anti-beta tubulin (1:10000) antibody was obtained from Thermo Fisher Scientific, Inc (Rockford, 

IL, USA). DAPI and MitoTracker Red (MitoTracker Red CMXRos) dyes were from Molecular Probes 

(Eugene, OR, USA). The ECL blot detection kit was provided by Perkin-Elmer, Inc (Waltham, MA, 

USA). The protein molecular weight marker was from Amersham (Buckinghamshire, England). 

TUNEL assay kit was from Promega (Promega Corp., Madison, WI), Cell Event Caspase 3/7 

detection reagent was from Invitrogen (Carlsbad,CA). All the other reagents used were of analytical 

grade. 

2.2. Plant Material 

Nicotiana glauca plant specimens were collected from their natural habitats in Buenos Aires 

Province, Argentina and were grown under green-house conditions. 

2.3. Extraction of lipid extracts 

The starting material plant was obtained from dried leaves of N. glauca (126 g), which was 

extracted for two times with 96% ethanol (3 L) at room temperature for 10 days. The ethanolic extract 

(crude extract) was concentrated under reduced pressure giving 26.3 g (21%). The residue was 

successively partitioned with hexane, chloroform and ethyl acetate. The extracted solutions were 

evaporated under reduced pressure and then lyophilized to yield 993 mg (3.8%) of hexane 

sub-extract, 61 mg (0.23%) of chloroform sub-extract and 164 mg (0.62%) ethyl acetate sub-extract. 25 

mg of final residue of each phase was solubilized in isopropanol (5 ml) and was stored at -20°C. 

2.4. Phytochemical screening 

Phytochemical examinations were carried out for all the sub-extracts as per the standard 

methods [39]. For the detection of alkaloids was used the Dragendroff’s test. The flavonoids were 

identified through the Fast Blue Salt reagent. The anthraquinones were detected using the 

Bornträger´s test, and triterpenes and steroids were recognized using Libermann Burchard’s test. 

2.5. Cell culture and treatment 

C2C12 murine skeletal myoblasts obtained from American Type Culture Collection (Manassas, 

VA, USA) were cultured in growth medium (DMEM) supplemented with 10% heat-inactivated (30 

min, 56 8C) fetal bovine serum, 1% nistatine, and 2% streptomycin. These highly myogenic cells 

have been widely used to study muscle functions [27,40,41].  The C2C12 cell line are murine 

myoblasts derived from satellite cells, whose behavior corresponds to that of progenitor lineage. 

This cell line is a subclone of C2 myoblasts [42] which spontaneously proliferate, differentiate and 

synthesize characteristic muscle proteins in culture [43,44]. Since C2C12 cells are comparable to 

satellite cells in muscle fibers [45], they represent an appropriate experimental model of them. 

Cells were incubated at 37 °C in a humid atmosphere of 5% CO2 in air. Cultures were passaged 

every 2 days with fresh medium. The treatments were performed with 70–80% confluent cultures 

(120 000 cells/cm2) in medium without serum for the time indicated in specific experiments. During 

this preincubation, cells were exposed to the crude extract from N. glauca (1:1000 dilution of the lipid 

extract in DMEM without serum), each sub-extract:  hexane, chloroform and ethyl acetate or vehicle 

[0.001% isopropanol (control)]; were added 20 min before induction of apoptosis with hydrogen 
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peroxide (H2O2) 0.5 mM at the times indicated (ranging from 30 min to 3 h). The time and 

concentration range of the oxidant has been previously used to study apoptosis in C2C12 cells 

[27,41,46]. H2O2 was diluted in culture medium without serum at a final concentration of 0.5 mM in 

each assay. After treatments, cells were lysed using a buffer composed of 50 mM Tris–HCl (pH 7.4), 

150 mM NaCl, 0.2 mM Na2VO4, 2 mM EDTA, 25 mM NaF, 1 mM phenylmethylsulfonyl fluoride 

(PMSF), 1% NP40, 20 mg/ml leupeptin, and 20 mg/ml aprotinin. Protein concentration was 

estimated by the method of Bradford (1976) [47], using BSA as standard. For microscopical assays, 

cells were cultured in chamber slides. 

2.6. Terminal Transferase dUTP Nick End Labeling (TUNEL) assays 

After the specific treatments, cells grown over coverslips, were processed for in situ localization 

of nuclei exhibiting DNA fragmentation by the technique of terminal deoxynucleotidyl transferase 

(TdT)-mediated dUTP digoxigenin nick-end labeling (TUNEL) with the use of the apoptosis 

detection kit DeadEndTM Fluorometric TUNEL System (Promega , Madison, WI). The protocols 

were followed according to the manufacturer´s instructions. Then cells were mounted with 95% 

glycerol and analyzed by conventional fluorescence microscope (NIKON Eclipse Ti-S equipped with 

standard filter sets to capture fluorescent signals, and images were collected using a digital camera). 

At least 500 cells of each experimental condition were counted and apoptotic cells were identified by 

nuclei staining (TUNEL-positive cells). The results were expressed as percentage of apoptotic nuclei. 

2.7. Quantitation of apoptotic cells 

After treatments, cells were fixed with methanol at -20 °C for 30 min and then washed with PBS. 

Fixed cells were incubated for 30 min at room temperature in darkness with 1:500 of a stock solution 

of DAPI (5 mg/ml) and next washed with PBS. Cells were mounted on glass slides and examined 

using a fluorescence microscope (NIKON Eclipse Ti-S) equipped with standard filter sets to capture 

fluorescent signals. Images were collected using a digital camera. Apoptotic cells were identified by 

the condensation and/or fragmentation of their nuclei. The results were expressed as percentage of 

apoptotic cells. A minimum of 500 cells was counted for each treatment from at least three 

independent experiments. 

2.8. MitoTracker red staining 

Coverslips with adherent cells were stained with MitoTracker red (Molecular Probes), which 

was prepared in dimethyl sulfoxide and then added to the cell culture medium at a final 

concentration of 1 mmol/l. After 15 to 30 min incubation at 37 °C, cells were washed with PBS and 

fixed with methanol at -20 °C for 30 min. Finally, the coverslips were analyzed by conventional 

fluorescence microscopy as described previously. 

2.9. Caspase-3/7 Activity Assay 

After specific treatments, cells were labeled with 6 μM CellEventTM caspase-3/7 green 

detection reagent in PBS with calcium and magnesium for 30 min at 37 °C in the dark. Finally, the 

stained cells were analyzed with a conventional fluorescence microscope (NIKON Eclipse Ti-S 

equipped with standard filter sets to capture fluorescent signals, and images were collected using a 

digital camera). At least 500 cells of each experimental condition were counted and activation of 

caspases were identified by green fluorescence in nuclei (Caspase-3/7-positive cells). The results 

were expressed as percentage of Caspase-3/7-positive cells. 

2.10. Western blot analysis 

Cell cultures were scrapped and resuspended using a lysis buffer (50 mM Tris–HCl, pH 7.4, 150 

mM, NaCl, 0.2 mM Na2VO4, 2 mM EDTA, 25 mM NaF, 1 mM phenylmethylsulfonyl fluoride 

(PMSF), 20 mg/ml leupeptin, and 20 mg/ml aprotinin). Lysates were collected by aspiration and 
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centrifuged at 12,000 g for 15 min. The protein content of the supernatant was quantified by the 

Bradford procedure [47] using BSA as standard. Then, lysate proteins dissolved in Laemmli [48] 

sample buffer were separated on 10-12% SDS polyacrylamide gels and electrotransferred to 

polyvinylidene difluoride membranes. Relative migration of unknown proteins was determined by 

comparison with molecular weight colored markers (Amersham, Piscataway, NJ, USA). Membranes 

were blocked 1 h at room temperature in PBS–T buffer (PBS 0.1% Tween-20) containing 5% dry milk. 

Membranes were incubated with different primary antibodies overnight at 4 °C, then washed three 

times in PBS–T and incubated in PBS–T containing 1% dry milk with peroxidase conjugated 

secondary antibodies for 1 h at room temperature. Next, membranes were visualized using an 

enhanced chemiluminescent technique according to the manufacturer’s instructions. For reprobing 

with other antibodies, membranes were incubated in stripping buffer (62.5 mM Tris–HCl, pH 6.8, 2% 

SDS, and 50 mM mercaptoethanol) for 30 min at 55 °C, washed for 10 min in PBS–T, and then 

blocked and blotted as described above.  

2.11. Statistical analysis 

Data analysis was performed using standard statistical packages (InfoStat System, Córdoba, 

Argentina [49]. All values are shown as the mean ± S.D. of at least three independent experiments. 

The data were considered statistical significant when P<0.05. 

3. Results 

3.1. Crude extract from Nicotiana glauca induces apoptosis in skeletal muscle cells 

In previous work, we observed that E2 abrogates H2O2-induced apoptosis of C2C12 myogenic 

cells [27]. Now we investigate whether the lipid extracts from N. glauca also act as the hormone. 

C2C12 cells were challenged with crude extract during the times indicated and apoptotic events 

were investigated (Methods). The nuclear dye DAPI showed morphological changes typical of 

apoptosis such as nuclear fragmentation/condensation (pyknotic nuclei) after treatment with the 

crude extract from N. glauca, which represented near to 70% of the cultured muscle cells in similar 

fashion as those treated with H2O2 0.5 mM (data not shown). In addition, morphological changes 

and cellular redistribution of mitochondria could be detected in C2C12 cells treated with ethanolic 

extract from N. glauca and then stained with the fluorescent mitochondrial probe MitoTracker red 

(Methods) as described above. Thus, Figure 1 shows that cells treated with vehicle (control) display 

‘spiderweb’ or uniform distribution of mitochondria through the cytosol. On the other hand, when 

apoptosis was induced with H2O2 or the cells were treated with the crude extract, we observed 

reduced mitochondria size, ‘pyknotic’, and characteristic clustering of the organelles around the 

nucleus (which represented near to 70% of the cultured muscle cells), events associated to apoptosis. 

To confirm those observations, we evaluated the effects of the crude extract from N. glauca on 

skeletal muscle cells by TUNEL assays (Figure 2). We perform the same experimental conditions as 

before. Cells treated with the crude extract exhibited a large increase in DNA fragmentation (63 % ± 

9.09 of TUNEL positive cells above the control), similar to the values obtained with H2O2 treatment 

(Figure 2). 
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                        (a)                        (b)                           (c) 

Figure 1. Crude extract from N. glauca induce changes in morphology and localization of 

mitochondria in C2C12 muscle cells. C2C12 cells grown on coverslips as 60–70% confluent 

monolayers were treated (see below), stained with MitoTracker Red, and fixed with methanol as 

described under Materials and Methods Section. (a) Untreated cells. (b) Cells treated with crude 

extract (1:1000 dilution) during 2 h. (c) Cells treated with H2O2 0.5 mM during 2 h. Untreated cells 

present normal mitochondrial morphology and distribution throughout the entire cell distant to the 

nucleus or display ‘spiderweb’ mitochondria; but cells treated with the crude extract exhibit 

mitochondria clustered around the nucleus with condensed or pyknotic aspect as cells treated with 

H2O2. At least ten fields per slide and three independent cultures were examined. Representative 

photographs are shown. Magnification: 63X. 

 

Figure 2. Crude extract from N. glauca induces apoptosis in C2C12 cells.  

C2C12 cells untreated (CONTROL) or incubated with crude extract from N. glauca for 1 h (CRUDE 

EXTRACT) or with the apoptotic inducer H2O2 (0.5 mM, 2 h). Then, apoptosis was determined by 

TUNEL assays as described under Materials and Methods Section and expressed as the percentage of 

TUNEL positive cells in the coverslips. Each value represents the mean of three independent 

determinations ±SD; *P <0.05 with respect to the control. 

3.2. Crude extract from Nicotiana glauca induced Apoptosis involves Caspase-3/7 

Within the caspase family, the effector caspases-3 and -7, orchestrate the destruction phase of 

apoptosis that results in the controlled dismantling of a range of key proteins within the cell and its 

subsequent disposal [50]. Moreover, one of the most evident and specific features of apoptosis is the 

degradation of the DNA into numerous fragments, driven by the activation of caspase-3 [51], the 

central effector caspase, which makes it an attractive biomarker of apoptosis. To address whether the 

apoptotic action of the crude extract from N. glauca on C2C12 muscle cells is exerted through 

caspases 3/7 activation, C2C12 cells were treated with ethanolic extract as before (Methods) and 

analyzed by fluorescent microscopy using the specific Cell Event Caspase 3/7 detection probe. As 

shown in Figure 3, the crude extract induces the caspases 3/7 activation (86% ± 7.21 of caspase 

positive cells above the control) in similar fashion as hydrogen peroxide. 
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Figure 3. Crude extract from N. glauca induces Caspase 3/7 activation. C2C12 cells grown on 

coverslips as 60–70% confluent monolayers were treated with the indicated stimuli as before and 

were analyzed for caspase activation using Cell Event Caspase 3/7 detection probe (Methods). 

(CONTROL) untreated cells, (CRUDE EXTRACT) cells incubated with crude extract from N. glauca 

for 1 h to 2h, (H2O2) cells treated with H2O2 (0.5 mM, 1 h to 2h). Experiments were repeated at least 

three times with essentially identical results. ±SD; *P <0.05 with respect to the control. 

3.3. Effect of hexane, chloroform and ethyl acetate sub-extracts from Nicotiana glauca 

With the aim to characterize the chemical structure of the apoptotic effectors present in the 

crude extract of N. glauca, extraction procedure with solvents was carried out (Methods). Thus, crude 

extract of N. glauca was partitioned with hexane, chloroform and ethyl acetate (Methods) and each 

sub-extract was tested for apoptotic activity in skeletal muscle cells by TUNEL assays and caspases 

activation. Regards caspase activation, the assay indicated that hexane and to a lesser extent 

chloroform sub-extracts (90 % ± 4.6 and 55% ± 14 of caspase positive cells above the control, 

respectively ) induce apoptosis activating caspases 3/7  (Figure 4). The same results were obtained, 

evaluating the caspase activation through flow cytometry (data not shown). Congruent with this 

data, TUNEL assays shown that hexane and to a lesser extent chloroform and ethyl acetate 

sub-extracts are able to induce apoptosis (98% ± 1.01, 67% ± 18.38, 44.6% ± 12.7 TUNEL positive cells 

respectively) (Figure 4). 

 

 

Figure 4. Hexane, chloroform and ethyl acetate sub-extracts from N. glauca induce apoptosis through 

caspase 3/7 in C2C12 cells. C2C12 cells were treated with the indicated stimuli (ETHYL ACETATE, 

CHLOROFORM or HEXANE) as before. CONTROL, untreated cells. Then, apoptosis was 

determined by TUNEL assays as described under Materials and Methods Section and expressed as 

the percentage of TUNEL positive cells in the coverslips. Likewise, other cultures were treated with 

sub-extracts as before and were analyzed for caspase activation using Cell Event Caspase 3/7 

detection probe (Methods). Each value represents the mean of three independent determinations 

±SD; *P <0.05 with respect to the control. 
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3.4. Lipid extracts obtained from Nicotiana glauca activate stress signaling 

Against a potentially damaging stresses the cell activates its defense mechanism/survival 

signaling pathways, as a first and rapid response that allows to tolerate and/or to recover from the 

damage imposed. As injury continues, such mechanisms are no longer sufficient. Thus, when the 

injurious signal persists and exceeds the mechanisms of survival, the net effect is the cell death.  

Among the cellular responses to stress, here we evaluated HSP27 and Akt phosphorylation levels in 

response to the lipid sub-extracts obtained from N. glauca crude extract. C2C12 cell cultures were 

incubated with each sub-extract during 30 min followed by measurement of HSP27 and Akt 

phosphorylation by immunoblot analysis of cell lysates. As shown in Figure 5, Western blot analysis 

using anti-phospho-Akt and anti-phospho-HSP27 antibodies revealed Akt and HSP27 activation 

(phosphorylation) in response to hexane, chloroform and ethyl acetate sub-extracts treatments. 

Immunocytochemistry studies using fluorescent microscopy and the same antibodies were 

congruent with the Western blot results, Figure 6. 

 

 

Figure 5. Hexane, chloroform and ethyl acetate sub-extracts from crude extract from N. glauca trigger 

Akt and HSP27 phosphorylation. C2C12 cells were treated with the indicated stimuli 

(CHLOROFORM, HEXANE, ETHYL ACETATE or H2O2) as before. CONTROL, untreated cells. Cell 

lysate proteins from each condition containing equivalent protein amounts (25 mg) were fractionated 

by SDS-PAGE, transferred to PVDF membranes, and western blotted with Phospho-Akt or 

Phospho-HSP27 antibodies as described in Materials and Methods Section.  Β-tubulin levels are 

shown as protein loading control. Immunoblots representative are shown. 
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Figure 6. Hexane, chloroform and ethyl acetate sub-extracts from crude extract from N. glauca trigger 

Akt and HSP27 phosphorylation. C2C12 cells were treated with the indicated stimuli 

(CHLOROFORM, HEXANE, ETHYL ACETATE or H2O2) as before. CONTROL, untreated cells. 

Fluorescence microscopy of p-HSP27 and p-Akt phosphorylation. HSP27 or Akt phosphorylated 

(green fluorescence) were stained by using anti- phospho-HSP27 or anti- phospho-Akt primary 

antibody, respectively and Alexa 488-conjugated secondary antibody. Experiments were repeated at 

least three times with essentially identical results (Magnification for P-Akt: 20x and for P-HSP27: 

63x). 

4. Discussion 

As was described in Introduction, Solanaceae family provide significant amount of 

phytoestrogens [37]. Phytoestrogens are supplements and widely marketed as a natural alternative 

to estrogen replacement therapy or to treat a wide range of health conditions. The risk of adverse 

effects of its use, however, has not been fully studied. Moreover, the molecular mechanism of the 

side effects is unknown for much of them. 

In this work, the murine skeletal muscle cells were treated with a crude ethanol extract from N. 

glauca, with the lipid sub-extracts obtained from that or with H2O2 as a positive control of apoptosis. 

As a first approach we evaluated the effects of those treatments seeing the cellular morphology 

using DAPI and mitotracker dyes. Cells exposed to the crude extract, to the hexane or to the 

chloroform sub-extracts shown typical apoptotic morphology (nuclear condensation / 

fragmentation, mitochondrial picnosis and clustering of the organelle near the nucleus) similar to 

H2O2 treatment. Opposing to ours previous works in which we observed that 17β-estradiol protects 

the skeletal muscle cells inhibiting the H2O2- induced apoptosis [52], here we found that the crude 
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extract and sub-extracts of hexane and chloroform from N. glauca induced apoptosis in C2C12 cells. 

Indeed, in accordance with the results from Tunel assays, we found an important activation of 

caspases when cells were treated with the lipid hexane and chloroform sub-extracts, being the 

hexane sub-extract the most potent.  On the other hand, the ethyl acetate sub-extract was unable to 

induce higher levels of apoptosis, throwing values similar to controls. These results suggest that 

molecules of lipidic nature, concentrated preferentially in the hexane and in less part, the chloroform 

sub-extracts, are responsible for the apoptotic stimuli.  

We have also observed that short treatments times (30 min) with the sub-extracts from N. glauca, 

induced the activation of a rapid cellular defense response with Akt and HSP27 activation as it was 

observed in previous works with H2O2 as the apoptotic inductor [52] . Indicating, that cells sense an 

injury from those treatments. However, when we perform longer treatments (1 to 2h) (data not 

shown), cells were unable to sustain those survival response and turn into apoptosis.  

Finally, in this work, we were interested to beginning with the identification of the molecular 

actors during the apoptotic signaling induced by the lipid extracts. For the first approaches we 

analyze caspase activity. In this assay the substrate (amino acid peptide DEVD) used to evaluate the 

caspase activation is recognized by both caspases 3 and 7. In view of this, our results suggest that the 

compounds from N. glauca trigger apoptosis involving caspase pathways, but we are unable by this 

method to identify the specific caspase involved. 

These results, opposite to those observed by us with E2, are in agreement with the different 

behaviors of phytoestrogens due their diverse ways to bind the ERs.  Indeed, they can act like 

partial ER agonists or antagonists [53]. The differential effects of agonists and antagonists on 

receptor activity in a given cell context have been ascribed to different conformations of the receptor 

ligand complex, as well as by differences in the interaction with transcriptional coactivator and 

corepressor proteins and other transcription factors. In addition, to increase the complexity of 

molecular mechanisms that mediate the phytoestrogens effects, it have been demonstrated that these 

compounds have additional cellular activities not ascribed to activation of the ERs, such as 

regulation of cell-signaling pathways [53,54].  

With the aim to obtain some knowledge about the chemical structure of the compounds 

responsible of the effects here observed on satellite cells, we performed phytochemical screening of 

the sub-extracts from N. glauca. We observed the presence of flavonoids, anthraquinones, triterpenes 

and steroids in the sub-extracts of hexane and chloroform. The presence of alkaloids in these 

sub-extracts was not observed.  In the ethyl acetate sub-extract the presence of all the chemical 

structures examined was detected, but probably, are present in a low concentration respect the 

others sub-fractions. An exciting prospect of the future research orientated to identify the 

compounds of hexane and chloroform sub-extracts lies in comprehension of their properties and 

complete determination of benefit/risk ratio. 

 The data reported here, on the effects of lipid extracts from N. glauca on myoblasts suggest that 

a possible use of this medicinal plant could affect the skeletal muscle homeostasis. Since, muscle 

satellite cells are critical for successful muscle regeneration and repair [55]. Thus, a possible 

compound to use in hormone replacement therapy to overcome menopausal symptoms like 

osteoporosis, could affect skeletal muscle leading to sarcopenia. Increasing the ageing symptoms. 

Clearly, additional studies are then necessary to further elucidate the signaling mechanisms, which 

mediate the apoptotic action of compounds from N. glauca in skeletal muscle cells. This knowledge 

may be of relevance to develop strategies for avoid undesirable side effects increasing the potential 

as natural pharmaceutical compound of phytoestrogens. 
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