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Abstract: Structural health monitoring (SHM) is aimed to obtain information about the structural
integrity of a system, e.g. via the estimation of its mechanical properties through observations
collected with a network of sensors. In the present work, we provide a method to optimally design
sensor networks in terms of spatial configuration, number and accuracy of sensors. The utility of the
sensor network is quantified through the expected Shannon information gain of the measurements
with respect to the parameters to be estimated. At assigned number of sensors to be deployed over
the structure, the optimal sensor placement problem is ruled by the objective function computed and
maximized by combining surrogate models and stochastic optimization algorithms. For a general case,
two formulations are introduced and compared: (i) the maximization of the information obtained
through the measurements, given the appropriate constraints (i.e., identifiability, technological and
budgetary ones); (ii) the maximization of the utility efficiency, defined as the ratio between the
information provided by the sensor network and its cost. The method is applied to a large-scale
structural problem, and the outcomes of the two different approaches are discussed.

Keywords: Structural health monitoring; Bayesian inference; Cost-benefit analysis; stochastic
optimization; information theory

1. Introduction

Structural Health Monitoring (SHM) allows to detect and estimate variations in the mechanical
properties of structural and engineered systems [1,2] and, hence, make decisions about the actions
needed to mantain or recover the overall structural safety [3]. Within a stochastic framework, the
higher the SHM system effectiveness, the lower the uncertainties of the estimated quantities. The aim
of the present work is the optimization of the SHM system, in terms of accuracy, number and spatial
configuration of the sensors. Two main advantages can be therefore foreseen: first, the amount of
information obtained from sensor measurements can be increased; second, the number of sensors can
be reduced without sacrificing the information content. In this way, on one hand the overall cost of the
SHM system can be reduced, on the other hand, as the amount of data to be analysed is cut down,
the computational cost of the SHM method can be decreased, allowing for real-time applications (e.g.
see [4]).

In the remainder of the paper, a theoretical introduction of the optimization formulation is given
in Section 2. Then, its application to a structural problem is discussed in Section 3. Finally, in Section 4
some concluding remarks are gathered.
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2. Theoretical framework

Let us assume that the goal of the SHM system is the estimation of a set of parameters
(e.g. mechnical properties, geometrical properties, damage indices) defined within an appropriate
mathematical numerical model, used to predict the response of the structure to given loads. Within a
Bayesian framework, the prior probability density function (pdf) p(θ) (where θ ∈ R

nθ is the random
vector of the nθ parameters to be estimated) can be updated into the posterior pdf p(θ|y), when the
measurements y ∈ R

ny are collected through the sensor network. Following a Bayesian experimental
design approach, the overall information provided by the measurements can be quantified using
the information theory, as introduced in [5]. Applying these concepts to the problem of optimal
sensor placement, a strategy based on the combination of surrogate models (see [6]) and stochastic
optimization (see [7]), was introduced in [4,8]. Let us call ny the number of measurements, pε the pdf
of the prediction error ε, and d ∈ R

nd the design variables which provide the spatial configuration
of the network on the structure. The optimal sensor placement configuration d∗ can be obtained by
maximizing the expected Shannon information gain U(d), see [4]; in doing this, parameters ny and pε

are supposed to be fixed for a specific optimization problem.
In general, the expected Shannon information gain is a function of d, ny and pε. The prediction

error ε = εm + εn depends on both the model error εm and the measurement noise εn. In [9], it was
proven that the spatial correlation among different measurements, which is embedded into pεm , affects
the optimal sensor configuration d∗. On the other hand, if the environmental effects are neglected, the
pdf of the measurement noise εn can be directly linked to the employed sensors, as the probability
model pεn depends on the sensors characteristics. The sensor network can be therefore optimized,
in terms of spatial configuration, number and type of sensors, by maximizing the expected Shannon
information gain according to:

(d∗, n∗
y, p∗εn) = arg max

[
U(d, ny, pεn)

]
(1)

where pεm is instead supposed to be constant.
Assuming that εn is sampled from a zero mean Gaussian pdf pεn = N (0, Σn), where 0 ∈ R

ny

is the mean vector, and Σn ∈ R
ny×ny is the covariance matrix, then U = U(d, ny, Σn). For the sake

of simplicity, we next assume that there is no correlation between measurements and so Σn = σ2I,
where σ is the standard deviation of measurement noise and I ∈ R

ny×ny is the identity matrix. The
optimization statement in Eq. (1) thus becomes:

(d∗, n∗
y, σ∗) = arg max

[
U(d, ny, σ)

]
(2)

The function U = U(d∗, ny, σ), corresponding to the maximum of the objective function for
each value of ny and σ, is computed for the corresponding optimal sensor configuration d∗. As
d∗ depends on the choice of

{
ny, σ

}
, then U = U(ny, σ) is implicitly a function of ny and σ only.

It can be proven [10] and numerically shown [11] that U increases as the number of sensors gets
higher (more information is provided by the SHM system). Moreover, if σ increases then U decreases,
since the structure response gets hidden by the measurement noise [12]. Thus, it follows that U is
a monotonically increasing function of ny and a monotonically decreasing function of σ: additional
constraints need therefore to be handled in order to obtain the optimal solution of Eq. (2).

Three types of constraints are here taken into account:

(a) technological constraint σ > σbest, with σbest designating the standard deviation of the
measurement noise of the most accurate sensor available on the market, to provide
measurements y;

(b) identifiability constraint ny > nobs, with nobs designating the minimum number of measurements
required to guarantee identifiability and observability of the parameters θ (see [2,13–15] );
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(c) cost constraint C(ny, σ) ≤ B, with C(ny, σ) designating the cost model of the SHM system and B
the maximum available budget.

The resulting constrained optimization problem is formulated as follows:

(d∗, n∗
y, σ∗) = arg max

[
U(d, ny, σ)

]

subject to

⎧⎪⎨
⎪⎩

ny > nobs
σ > σbest
C(ny, σ) ≤ B

(3)

As far as the cost model is concerned, the simplest formulation, includes a constant overall
contribution C0, which takes into account the cost of data acquisition hardware, database, assemblage,
etc., and a variable contribution, which takes instead into account the cost of the sensors. The associated
expression is:

C(ny, σ) = C0 + c(σ) ny (4)

where c(σ) is the cost per unit sensor.
One possible approach for solving the optimization problem would consist in defining a new

design variable to account for ny and σ; next, the optimal solution is obtained by applying an
optimization algorithm for stochastic problems, like the Covariance Matrix Adaptation-Evolution
Strategy [7]. When only a limited number of sensor types is available, an alternative approach is based
on the computation of the function U = U(d∗, ny, σ) = U(ny, σ) on a set of points {ny, σ}, as shown
in Section 3.

The optimization problem introduced in Eq. (3) allows to design sensor network such that
the provided information is maximized, given a certain budget B. Following a usual method in
decision making strategies (see [16]), an alternative optimization rationale would be to maximize the
ratio between the expected Shannon information gain and the cost of the SHM system, in a sort of
cost-benefit analysis. Thus, the following utility-cost index (UCI) is defined:

UCI(d, ny, σ) =
U(d, ny, σ)

C(ny, σ)
(5)

where the associated measurement unit is [nat/e], [nat] being natural unit of information. The
resulting optimization problem then becomes:

(d∗, n∗
y, σ∗) = arg max

[
UCI(d, ny, σ)

]

subject to

⎧⎪⎨
⎪⎩

ny > nobs
σ > σbest
C(ny, σ) ≤ B

(6)

The above formulation allows to obtain the most efficient SHM design, i.e., to maximize the
information per unitary cost.

As regards the solution of the optimization problem, the objective function to be maximized turns
out to be now UCI = UCI(d∗, ny, σ) = UCI(ny, σ), where d∗.
The application of the two formulations defined in Eqs. (3) and (6) to the optimal design of a SHM
system is presented in Section 3.

3. Results

The method presented in Section 2 is applied to the Pirelli tower, a 130 m tall building in Milan.
The associated finite element model features a total number of 4106 nodes, each one with 6 degrees
of freedom, i.e. the displacement components ux1 , ux2 and ux3 along the three axes x1, x2 and x3 of a
orthonormal reference frame and the 3 rotation components ϕx1 , ϕx2 and ϕx3 about the same axes. For
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further details on the model, the reader may refer to [17]. We herein assume that measurements can
be either displacements or rotations; nθ = 6 parameters, including both geometrical and mechanical
properties, ought to be inferred (see [8] for further details on the choice of the parameters).

In Fig. 1a, the contour plot of the objective function U(ny, σ) = U(d∗, ny, σ) is shown at varying
number ny and accuracy of the sensors (measured through σ). As previously discussed, the plot
shows that the maximum value of the expected Shannon information gain increases as ny gets higher
and as the standard deviations decreases. It can be also observed that the increase in the expected
Shannon information gain due to each additional measurement gets lower as more measurements are
considered. In other words, the derivative of the expected Shannon information gain with respect to
the number of sensors ∂U

∂ny
is a decreasing function of ny. Interpreting the optimization problem within

a decision-making view, it is interesting to underline that this behaviour corresponds to the so-called
"law of diminishing marginal utility" (also known as Gossen’s First Law [18]), which was proposed
for problems of resources allocation optimization. This law states that the marginal utility of a certain
system, due to an additional unit, decreases as the supply of units increases. In the current problem
of optimal SHM system design, the utility, i.e., the benefit of the sensor network is quantified by the
expected Shannon information gain (see Section 2), and the unit is represented by each measurement.

If the cost model defined in Eq. (4) is employed, the red lines in Fig. 1a represent different budget
constraints, i.e., the solutions

{
σ ny

}
of the equation B = C0 + c(σ) ny, with B being the available

budget (in the example B1 = 2000 e, B2 = 2500 e, B3 = 3000 e). This graph allows the designer
to choose the optimal SHM sensor network characteristics σ∗ and n∗

y and the associated optimal
configuration d∗, which corresponds to the maximum U(d, ny, σ): it is worth noting that in this case
the solution is basically ruled by the budget constraint. A discussion about the optimal configurations
d∗ obtained through the optimization procedure can be found in [8].

A different approach for decision making is to define a Pareto front for U(d) versus cost savings,
as shown in Fig. 1b: each line here represents the optimal design for a certain standard deviation σ, i.e.
a certain type of sensors. Along the x-axis quantity the cost saving is represented, which is defined as
the cost function normalized with respect to the chosen budget; the vertical straight line represents the
budget B. Any design point located on the left of each line represents a non-optimal solution, i.e. the
associated cost does not correspond to the best choice of

{
d ny σ

}
.

(a)

-100 -80 -60 -40 -20 0 20 40
0

1

2

3

4

5

6

7

8

=1  10-6 m2

=5  10-7 m2

=1  10-7 m2

=5  10-5 m2

=1  10-8 m2

(b)

Figure 1. (a) Contour plot of U(ny, σ), where lines represents the budget constraints B = C(σ, ny), with
B1 = 2000 e, B1 = 2500 e, B1 = 3000 e. (b) Pareto front of the expected Shannon information gain
with respect to the SHM system cost.

The alternative design optimization approach defined in Eq. (6) is based on the maximization of

the ratio UCI(ny, σ) =
U(ny,σ)
C(ny,σ) . The resulting optimal solution obviously depends on the cost model:

in Fig. 2a the SHM system is supposed to have a lower cost C0 = 500 e; in Fig. 2b the SHM system is
supposed to have a higher cost C0 = 1000 e. In both cases, the most efficient allocation resources is
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obtained if the best sensors, in terms of measurement noise, are chosen; the optimal number of sensors
depends instead on the cost model: the higher C0, the higher n∗

y.
It is worth noting that, while the function U(ny, σ) always increases with ny and σ, the function

UCI(ny, σ) presents a maximum for a finite value of ny. As previously discussed, the increase in
information associated with each additional sensor decreases as more sensors are considered: from a
cost-benefit point of view, it is therefore worthless to add sensors, i.e., to increase the SHM cost, if the
associated additional benefit (the additional expected Shannon information gain) becomes too low.

(a) (b)

Figure 2. Contour plot of UCI(d∗, ny, σ) =
U(d∗ ,ny,σ)

C(ny,σ) , with (a) C0 = 500 e and (b) C0 = 1000 e.

4. Conclusions

In the present work, a strategy to optimally design sensor networks for SHM applications, in
terms of spatial configuration, accuracy and number of sensors, has been introduced. Two optimization
formulations have been proposed, related either to the maximization of the expected Shannon
information gain or to the maximization of the ratio between the information and the cost of the
SHM system. The application of the two strategies to a large-scale structural problem has been
discussed, highlighting the effect of the cost budget on the optimal solution. A Pareto front approach
has been also discussed, allowing to obtain a prompt tool for the SHM system design.
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Abbreviations

The following abbreviations are used in this manuscript:

SHM Structural Health Monitoring
pdf Probability Density function
UCI Utility-cost index
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