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Abstract: 1) CS introduces a framework for simultaneous sensing and compression of big size 
vectors that applies in a range of applications including Optical Imaging and Synthetic Aperture 
Radar. 2) Total variation minimization; split Bregman; linearized Bregman and sparse 
reconstruction propose extremely efficient methods for solving optimization problems; which 
transform ݈ଵ-norm constrained problems into unconstrained problems by adding penalty term.. In 
the paper; the main principles of several algorithms are firstly introduced; then optimization 
iteration steps for algorithms are presented in detail. 3) Next; to research the performances of the 
algorithms in terms of the convergence and reconstruction precision; a series of numerical 
experiments for the above algorithms clearly show visual qualities of reconstructed images.4) we 
analyze the influence of the parameters ߤ  and σ  on iterative performances as well as the 
difficulties of controlling parameters; making clear the advantage of The Minimum total variation 
compared to other algorithms; and the low-complexity of Bregman . 
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1. Introduction 

In the application of image processing, when the acquisition process of measuring information 
is linear, reconstructing the target image from the measured data may be simplified as a linear system 
of equations. Using mathematical concepts, The relationship measured data ܡ	 ∈ ௠ࡾ  with signal 
vector ࢞ ∈  :୒ can be described asࡾ

=y Ax  (1) 

Matrix	࡭ ∈  ௠×୒（m≪N）establishes linear measurement process (referred to as measurementࡾ
matrix), by solving the above linear equation restores the original signal x. If m < N, the classical 
linear algebra pointed out that problem (1) is underdetermined [1], and there are a number of 
solutions (assuming equation solution, at least one). It is impossible to reconstruct the signal ݔ from y in case of m < N, which must meet that the sampling frequency of a continuous time signal must 
be twice more than the highest frequency to ensure the reconstruction. 

In the following discussion, we often use norm. For a signal vector ࢞  ݈௣ norm	its,（௡ݔ,…,ଵݔ）=
denotes [2]: 

1

1
( ) [1, ]n p p

ip i
x p

=
= ∈ ∞x  (2) 

Equation (1) are generally converted to a minimum ݈଴ norm optimization problem [2–4]:  
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Equation (4) is a second-order cone programming problem. Using interior-point method can 
realize cone programming problem。 

2. Experiments  

2.1. Total Variation Minimization 

Briefly, a function of the total variation is the Euclidean norm integral of functional gradient:   

( )
BV

f f dx= ∇ x  (5) 

If f is discrete, it can be written as  

2 2

1 , 2 ,
,

( ) ( )i j i jBV
i j

f f fδ δ= +  (6) 

where 1 , , 1,( )i j i j i jf f fδ −= −  , 2δ  is similar. 
Total variation minimization solves the optimization problem ݉݅݊࢞  :as follow [5] (࢞)ܬ

( ) 2

2

1( )
2RJ Jμ= + −x x Ax y  (7) 

where ܬߤோ(࢞) is called penalty term and ܬோ(࢞) =  .஻௏‖࢞‖
In following, we introduce mathematical methods called a half second neat to solve complex 

penalty term.  
Conference [6] comes to using the new price of half a second structured functional to solve the 

optimization problem:  

( ) ( ) ( ) ( ) ( )2 22* 2 2, , -x y x x x y y y
k k k kk k

k k

J b b b D b b D bω ω   = + + Φ + + Φ       x Ax y x x  (8) 

where the new half-quadratic regularization transform ( )J x  with total variation term into where 

, , 1 , , 1 ,( ) ( ) / ,( ) ( ) / .x y
i j i j i j i j i j i jD Dδ δ+ += − = −x x x x x x  Iterations of the algorithm start with ࢞଴= 0. The 

iteration of ࢞࢈and ࢈௬ is 

( ) ( )( )
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x x
 (9) 

The iteration of ࢞ is solve the following equation 
2 1 1T n n TCω + +− =A A x A y  (10) 

where 
1 1 1n T n T n

x x x y y yD D D D+ + += − −C B B . 

where ܦ௫ and ܦ௬ are convolution matrix generated from ଵఋ [1 − 1]和ଵఋ [1 − 1]். 
In order to effectively solve (10) the result of the iterative process, we adopt the conjugate 

gradient algorithm [7].  

2.2. Linearized Bregman  

Because the design of measurement matrix A is mostly linear, so the above iterative process is 
simplified to  
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2

1arg minn J(  )+ μ
+ = −Ax x x y  (11) 

21
2

1n n

μ
+ = − ∇ −Ap p x y  (12) 

When the penalty term ࢞‖=(࢞)ܬ‖ଵ, using linearized Bregman iteration [8] convert the above 
process into   

221
1 2 2

1 1,
2

n n n

μ δ
+ = − ∇ − − + −x x x y p x xA x  (13) 

21
2

1n n

μ
+ = − ∇ −p p Ax y  (14) 

2.3. Split Bregman 

Split Bregman iteration solve minimum ݈ଵ norm, like 

1
argmin ( ) ( )Hϕ= +x x x  (15) 

where ܪ is convex, ߮ is convex and differentiable. The basic idea is to put the problem down into 
the following questions [9,10]:  

1
( , ) argmin ( )H= +x d d x  subject to ( )ϕ =x d  (16) 

We add ݈ଶ norm, then get unconstrainted problem  

2

1

1arg min ( ) ( )
2x

H ϕ+ + −d x d x  (17) 

The decomposition is introduced by Wang and Dr.Yin Zhang (FTVd)[]. 
We need a way to modify (17) the unconstrained problem and get accurate solution. For the 

problem (17), a simplified iteration method is given [11]: 

21 1
1

1( , ) arg min ( ) ( )
2

k k k

x

H ϕ+ + = + + − −x d d x d x b  (18) 

1 1( ( ) )k k kϕ+ += + −b b x d  (19) 

3. Results 

1) Convergence [11]: the evolutions of kx  slowly keep convergence with the algorithm iteration, 
The minimization of two iterative results is determined by 

11)( k k

F
k

M N
δ −−

×
x x x  (20) 

2) Reconstruction precision [11]: reconstruction quality is measured by the mean variance error 

2*
 2

1

1 ˆ
Iter

k k
kN Iter

σ
=

−
×  x x  (21) 

where *
kx  is original image,  ˆkx is the result of final iteration. 

Assuming matrix D represent  sparse manipulation[12–14], TD transform sparse image into 
original image. Considering =α Dx  ,so α is called the sparse representation of image x . 
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Total variation minimization is denoted TVCS , Split Bregman has two schemes, which 
( )RJ =x x denotes splitBregmanCS , ( )RJ =x Dx denotes _ model1sparseCS . Linearized Bregman chooses 

( )RJ =x α that (7) is rewritten as 
2

1 22
Targmin

μ+ −α = α AD α y , which is denoted _ model 2sparseCS . 

3.1. Experiment 1 Simulation 

M N×  measurement matrix is extracted from sample matrix with single pixel camera 
experiment in Rice University. （http://dsp.rice.edu/cscamera）,Haar wavelet transform produces 
N L×  sparse matrix, and test data by  k k=y Ax . 

          
(a)Original image      (b) TVCS       (c) splitBregmanCS      (d) _ model1sparseCS     (e) _model 2sparsrCS      

Figure 1. Simulation for letter. 

 
(a) TVCS                              (b) splitBregmanCS  

 
(c) _ model1sparseCS                        (d) _ model 2sparseCS  

Figure 2. The relationship of ( )kδ x  and Iter . 

3.2. Experiment 2 Test Data Reconstruction 

We recover images using measurement data obtained by experiment Rice single pixel camera 
makes. Measurement data are generally less than 60% of the reconstructed data, so next, 
measurement data with	ܯ = 2048 get reconstruction images with 64 × 64（ܰ = 4096）pixels, where 
experiments based on the algorithm of ்ܵܥ௏ and ܵܥ௦௣௔௥௦௘_௠௢ௗ௘௟ଶ are given. 
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4. Discussion 

 

Figure 3. The reconstruction for mug, ball, dice and logo. 

        

Figure 4. Synthetic data reconstruction. 

Table 1. Algorithm Convergence M = 2048,	N = ܭ	,4096 = ܨ,10 = ࢔ࢇ࢓ࢍࢋ࢘࢈࢚࢏࢒࢖࢙ࡿ࡯ ࢂࢀࡿ࡯  ࢘ࢋ࢚ࡵ(࢑)࢞ࢾ			 .2 ૚࢒ࢋࢊ࢕࢓_ࢋ࢙࢘ࢇ࢖࢙ࡿ࡯ ૛࢒ࢋࢊ࢕࢓_ࢋ࢙࢘ࢇ࢖࢙ࡿ࡯
10 75.62 10−×   041.37 10−×   053.43 10−×   042.89 10−×  
50 92.31 10−×   061.41 10−×   053.1210−   052.52 10−×   
100  166.01 10−×   091.40 10−×   052.97 10−×   052.01 10−×   

Table 2. Algorithm Accuracy M = 2048,	N = ܭ	,4096 = ܨ,10 = ࢔ࢇ࢓ࢍࢋ࢘࢈࢚࢏࢒࢖࢙ࡿ࡯  ࢂࢀࡿ࡯  ࢘ࢋ࢚ࡵ	࣌ .2 ૚࢒ࢋࢊ࢕࢓_ࢋ࢙࢘ࢇ࢖࢙ࡿ࡯ ૛࢒ࢋࢊ࢕࢓_ࢋ࢙࢘ࢇ࢖࢙ࡿ࡯
10 0.05707 041.30 10−×  0.01236 033.70 10−×   
50 0.05097 081.05 10−×  0.01695 032.86 10−×   
100 0.05098 096.69 10−×  0.03139 032.48 10−×   

 

 
Figure 5. Convergence for TVCS and 2SSBCS . 
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Figure 6. Relationship between accuracy and time. 

Total variation minimization always keeps excellent performances no matter how synthetic data 
change, and its stability of convergence is relatively high compared to three other algorithms, which 
are susceptible to the effects of measurement noise. Split Bregman and linearized Bregman need 
control the parameters ,such as μ andσ , which determine convergence precision and the quality of 
reconstruction. But, Bregman has itself outstanding advantages that accelerates the speed of 
convergence and greatly simplifies the complexities for reconstruction process. Fig 5 shows the 
speeds of convergence for TVCS  and _model 2sparsrCS . The relationship between convex accuracy and time 
is given in Fig 6. The only drawback is the choices for appropriate parameters take a lot of work. So, 
in the next tasks, parameters for Bregman are important direction on research. 

5. Conclusions  

Compared to other algorithm, total variation minimization always maintains good convergence 
for different images and measurement data, and can obtain fine quality of images, which are 
susceptible to the effects of measurement noise. For Bregman, the parameters of μ and σ determine 
the qualities of images recovery precision and the speed of convergence.  
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