

2nd International Electronic Conference on Water Sciences (ECWS-2)

16–30 November 2017 Chaired by Prof. Dr. Maria Filomena Camões & Prof. Dr. Kevin B. Strychar

Sponsored by:

🌢 water

Determination of micropollutants in water samples from swimming pool systems

Anna Lempart *, Edyta Kudlek , Mariusz Dudziak

INTRODUCTON

- Research on PPCPs in swimming pools are still in their infancy and available data are limited.
- PPCPs are designed to be biologically active even at low concentrations.
- Long-term exposure to the PPCPs mixture may potentially cause negative health effects.
- PPCPs' degradation in swimming pool water treatment systems is possible and their by-products may be more relevance to the health of swimmers than their parent compound

INTRODUCTON

 Swimmers have direct contact with the compounds present in the swimming pool water and their by-products

INTRODUCTON

- The determination of PPCPs requires very sensitive analytical methods that enables to confirm the presence of tested compounds in a complex organic extract.
- This study presents a selection of procedure for determining the concentration of three compounds from the macro-group of Pharmaceutical and Personal Care Products.

MATERIALS AND METHODS

Table 1. Characteristics of tested compounds

Standard	Structural formula	Molecular formula	Molar Mass [g/mol]	CAS Number	Purity
Caffeine (CAF)	H_3C N N N N N N N N N N N N N N N N N N N	$C_8 H_{10} N_4 O_2$	194.19	58-08-2	>99%
Benzophenone-3 (BP-3)	O OH OCH3	C ₁₄ H ₁₂ O ₃	228.24	131-57-7	98%
Carbamazepine (CBZ)	O NH2	$C_{16}H_{12}N_2O$	236.27	298-46-4	>99%

ECWS

Sponsored by:

MDPI

Table 2. Characteristics of Supelclean[™] Tubes applied to Solid Phase Extraction

Tube Type	Bed Weight [g]	Tube Volume [mL]	Carbon Loading [%]	Bed Type
ENVI-8	1	6	14	C8 (octyl)
ENVI-18	1	6	17	C18 (octadecyl)
LC-8	0.5	6	7	C8 (octyl)
LC-18	1	6	11.5	C18 (octadecyl)
LC-CN	0.5	6	7	Cyano
LC-Ph	0.5	3	5.5	Phenyl

water

RESULTS – The determined operating GC-MS (EI) parameters

RESULTS - The linearity of mass detector response

ECWS

Sponsored by:

water

Figure 1. Calibration curve by GC-MS for (a) CAF, (b) BP-3, (c) CBZ

Sponsored by:

Table 3. The parameters of calibration curves for determining micropollutants by GC-MS

Standard	$t_R \pm SD$	R ²	a	S _a	b	S _b
CAF	19.37 ± 0.01	0.99	2 000 000	316 802	-677 705	459 921
BP-3	22.46 ± 0.02	0.99	35 504	2 019	-20 739	2 931
CBZ	24.19 ± 0.02	0.95	766 841	295 337	936 453	428 759

- The obtained values of R2 coefficient show the linearity of the detector's response.
- Retention times of compounds allow for proper separation and appropriate identification in complex water matrices.
- The standard deviations of t_R are acceptable.

Sponsored by:

Table 4. Coefficient of Variation (CV) for five concentration levels of tested micropollutants

	CV [%]					LOD
Standard ——	0.5 ng/µl	1.0 ng/µl	2.0 ng/µl	5.0 ng/µl	10.0 ng/µl	[ng/L]
CAF	0.66	1.39	1.81	1.67	2.25	0.02
BP-3	1.32	1.41	2.28	2.08	0.95	0.02
CBZ	2.81	2.89	2.68	1.59	1.66	0.10

- The LOD determines the lowest quantity of a substance that can be distinguished from the absence of that substance within a stated confidence limit
- The obtained values of CV do not exceed 3% that confirm the high repeatability of conducted measurements.

Silesian University of Technology

		Recovery [%]	88.6	100	100	
	ENVI-8	LOQ [ng/L]	0.63	2.78	1.51	
		Recovery [%]	100	100	100	
	ENVI-18	LOQ [ng/L]	0.57	2.07	1.18	
	100	Recovery [%]	79.8	83.5	66.2	
Mathemal	LC-8	LOQ [ng/L]	0.66	2.40	1.77	
Methanol	1010	Recovery [%]	95.4	75.3	100	
	LC-18	LOQ [ng/L]	0.91	4.07	2.08	
	10.001	Recovery [%]	40.6	100	100	va
	LC-CN	LOQ [ng/L]	3.23	3.39	1.69	
	1.0.7%	Recovery [%]	100	100	72	Tu
	LC-Ph	LOQ [ng/L]	0.81	2.56	2.03	
		Recovery [%]	82.7	100	93	
	ENVI-8	LOQ [ng/L]	0.37	1.82	1.26	
		Recovery [%]	85.1	82.2	100	
	ENVI-18	LOQ [ng/L]	0.43	2.31	1.18	
		Recovery [%]	100	100	94.2	
	LC-8	LOQ [ng/L]	1.27	7.19	4.29	
Acetonitrile		Recovery [%]	99.3	78.6	100	
	LC-18	LOQ [ng/L]	1.12	8.06	3.62	
	LC-CN	Recovery [%]	27.6	100	82.5	
	LC-CN	LOQ [ng/L]	1.14	1.52	1.06	
	LC-Ph	Recovery [%]	100	73.7	92.5	
	LC-Pil	LOQ [ng/L]	0.25	2.04	1.04	
	ENVI-8	Recovery [%]	97	100	85	
	ENVI-6	LOQ [ng/L]	2.40	3.68	3.31	
	ENVI-18	Recovery [%]	100	100	100	
	21001-10	LOQ [ng/L]	0.84	0.95	0.87	
	LC-8	Recovery [%]	86.2	100	90	
Methanol +	20-0	LOQ [ng/L]	0.77	1.10	1.24	
Acetonitrile	LC-18	Recovery [%]	100	100	100	
	LC-18	LOQ [ng/L]	0.82	2.62	2.51	

Recovery [%]

LOQ [ng/L]

Recovery [%]

LOQ [ng/L]

LC-CN

LC-Ph

36.7

7.58

100

2.92

77.7

10.64

100

9.52

85.7

9.52

100

7.35

RESULTS - Recovery and LOQ for various combinations of SPE Tube types and the solvents

MDPI

Sponsored by:

ECWS

water

Chosen as the most optimal methodology

RESULTS – Recoveries in different matrices

Table 6. Recoveries obtained in the most optimal Solid Phase Extraction methodology(Methanol + Acetonitrile and ENVI-18 Tube) for different matrices

Matrix	Recovery ± SD [%]				
wiatrix	CAF	BP-3	CBZ		
Deionized water	100 ± 2.4	100 ± 9.9	100 ± 10.0		
Tap water	92.5 ± 2.8	95.7 ± 1.2	98.4 ± 8.2		
Swimming pool water	100 ± 2.2	100 ± 5.9	100 ± 5.4		

- Based on the calculated recovery factors, the accuracy of the results obtained from the chosen analytical method was very good.
- The repeatability of the results measured as the standard deviation was satisfactory, its value was in the range from 1 to 10%.

Sponsored by:

Table7. Limits of Quantification obtained in the most optimal

Solid Phase Extraction methodology (Methanol+Acetonitrile and ENVI-18) for different matrices

Matrix	CAF	BP-3	CBZ
Deionized water	0.84	0.95	0.87
Tap water	0.78	0.88	0.83
Swimming pool water	0.69	0.75	0.71

- The lowest LOQs were obtained for swimming pool water, while the highest were observed for deionized water.
- The observed differences show the influence of the organic and inorganic substances presence in the water matrix on the LOQ value.

CONCLUSIONS

- The presented analytical procedure enables the quantification of caffeine, carbamazepine and benzophenone-3 with satisfactory repeatability and accuracy.
- The obtained recovery values ensure the possibility of full quantitative control of the tested micropollutants in samples collected from swimming pool waster systems.
- The developed methodology can be used for analytical control of swimming pool water treatment processes from selected Pharmaceuticals and Personal Care Products.
- The different physicochemical composition of water affect on LOQ. The values of LOQ obtained for swimming pool water were lower than for deionized and tap water.