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Abstract: The success of biopharmaceuticals as highly effective clinical drugs has 12 

recently led industrial biotechnology towards their large-scale production. The 13 

ovary cells of the Chinese hamster (CHO cells) are one of the most common 14 

production cell line. However, they are very inefficient in producing desired 15 

compounds. This limitation can be tackled by culture bioengineering, but 16 

identifying the optimal interventions is usually expensive and time-consuming. In 17 

this study, we combined machine learning techniques with metabolic modelling 18 

to estimate lactate production in CHO cell cultures. We trained our poly-omics 19 

method using gene expression data from varying conditions and associated 20 

reaction rates in metabolic pathways, reconstructed in silico. The poly-omics 21 

reconstruction is performed by generating a set of condition-specific metabolic 22 

models, specifically optimised for lactate export estimation. To validate our 23 

approach, we compared predicted lactate production with experimentally 24 

measured yields in a cross-validation setting. Importantly, we observe that 25 

integration of metabolic predictions significantly improves the predictive ability 26 

of our machine learning pipeline when compared to the same pipeline based on 27 

gene expression alone. Our results suggest that, compared to transcriptomic-only 28 

studies, combining metabolic modelling with data-driven methods vastly 29 

improves the automatisation of cultures design, by accurately identifying optimal 30 

growth conditions for producing target therapeutic compounds. 31 

Keywords: CHO cell; Biopharmaceutical; Metabolic modelling; Machine learning; 32 

Flux balance analysis.   33 

 34 

1. Introduction 35 

Chinese hamster ovary (CHO) cells are widely regarded as one of the most reliable 36 

cell types for industrial-scale mammalian protein production. As compared to 37 

bacterial cell lines such as those of Escherichia coli, CHO cultured cells are less 38 
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productive, much fragile and grow slowly. In turn, this means that the 39 

manufacturing methods that facilitate protein production using CHO cell lines are 40 

much more expensive and time-consuming. However, heavy interest is put in 41 

optimising CHO cell lines as they are required to produce mammalian 42 

recombinant proteins. 43 

Recent advances in this context have focused on unraveling the complex 44 

biological machinery controlling desirable characteristics of protein synthesis and 45 

secretion [1]. While gene expression profiling has proved helpful in past studies, 46 

there have been recent efforts to combine genetic data with knowledge of 47 

metabolic pathways through the reconstruction of genome-scale metabolic models 48 

(GSMMs). GSMMs attempt to describe cellular metabolism in silico through gene 49 

annotation and stoichiometry associated with reactions and metabolites, as well as 50 

with constraints such as upper or lower bounding of metabolic flux rates. Flux 51 

balance analysis (FBA) allows to predict the configuration of metabolic reaction 52 

fluxes within GSMMs under general growth conditions [2]. Condition-specific 53 

GSMMs can be built using a variety of methods and extended FBA pipelines. The 54 

idea is to use omic-data available in each condition, and a set of rules to constrain 55 

the flux rates of the general-purpose GSMM [20,21]. 56 

Metabolic models have recently been reconstructed for CHO-K1, CHO-S, and 57 

CHO-DG44 cell lines, along with a general consensus model [3].  These models 58 

were useful in quantifying the protein synthesis capacity of these cell lines and 59 

revealed that bioprocessing treatments such as histone deacetylase inhibitors' lead 60 

to an inefficiency in increasing product yield. FBA can thus reveal the impact of 61 

various media and culture conditions on growth and yield of cultured cells, aiding 62 

CHO cells bioengineering [3-6]. Moreover, computational estimation of metabolic 63 

fluxes can be an asset when experimental data is not available [7]. 64 

However, the precision of GSMMs strongly depends on available pathway and 65 

biochemical knowledge. Especially when dealing with the complexity of 66 

mammalian cells, more advanced computational techniques may be necessary for 67 

an effective application to real problems within the bio-processing industry. In 68 

particular, machine learning coupled with computational modelling of CHO cells 69 

has the potential to effectively elucidate optimal bioengineering steps towards 70 

improved production of therapeutic metabolites and proteins [8]. 71 

Here we present a new approach integrating machine learning and metabolic 72 

modelling for the computational prediction of protein production in CHO cells. We 73 

propose to integrate experimental data on the gene level with data generated in 74 

silico via a GSMM of CHO cells metabolism within an integrated data-driven 75 

framework (Figure 1). We evaluated this approach by a computational validation, 76 

estimating the average prediction error in general settings. Importantly, we 77 

observe that metabolic predictions coupled with gene expression data can 78 

significantly improve estimations of lactate production based solely on gene 79 

expression. 80 
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 Figure 1. Workflow of the proposed approach for the prediction of metabolite and protein prediction in 84 
CHO cells. Steps (i)-(iv) are presented in the Methods section of this work. They serve the final goal of 85 
optimising culture bioengineering, depicted in step (v). Integrating transcriptomics data, machine learning 86 
methods and metabolic modelling improves the predictive ability of transcriptomic-only methods. 87 

2. Materials and Methods  88 

2.1 Publicly available gene expression data  89 

As a first data source, a large-scale gene expression dataset from two different 90 

CHO cell lines was used [9]. This dataset contains 295 microarray profiles with 91 

expression values for 3592 genes from 121 CHO cell cultures of varying conditions 92 

in terms of including cell density, growth rate, viability, lactate and ammonium 93 

accumulation and cell productivity. We extracted the 127 profiles with available 94 

quantification of lactate accumulation. 95 

2.2 Genome scale reconstruction of CHO metabolism  96 

We used a recently developed GSMM of CHO cell metabolism, previously 97 

used to accurately predict growth phenotypes [3]. This model is the largest 98 

reconstruction of CHO metabolism to date, with 1766 genes and 6663 reactions, 99 

aggregating community knowledge from various sources.  Being a consensus 100 

model, it provides general mechanistic relationships that can be refined depending 101 

on the particular task or cell line of interest. 102 

2.3 Building condition-specific poly-omics models of CHO cells 103 

To create condition and cell line-specific poly-omics models the genome-scale 104 

model of CHO cell metabolism was combined with the gene expression data from 105 

CHO cell cultures in varying conditions. In this step, data accessible via the BIGG 106 

(i) Transcriptional profiles from a 

range of culture conditions

(ii) Condition-specific poly-omic models of 

metabolism and its genetic regulation

(iv) Machine learning to predict metabolite/protein 

production in untested conditions

(iii) Computational metabolic 

analysis for model fine-tuning

(v) Optimisation of  

bioengineering of cultured cells
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repository was employed to match gene identifiers [10]. A model for each 107 

condition was created by computing gene set effective expressions Θ for each 108 

reaction, following previous investigations [11,12]. The effective expression at 109 

reaction level is thereby determined by gene expressions θ(g) and by gene-protein-110 

reaction rules, properly converted to min/max rules depending on the type of gene 111 

set. In particular, we define Θ(g) = θ(g) for single genes, Θ(g1 ∧ g2) = min{θ(g1), 112 

θ(g2)} for enzymatic complexes and Θ(g1 ∨ g2) = max{θ(g1), θ(g2)} for isozymes. 113 

Lower bounds and upper bounds for each reaction were obtained by applying the 114 

following multiplicative coefficient to its native bounds:  115 

ϕ(Θ) = [1 + γ|log(Θ)|]sgn(Θ-1), (1) 

where γ is a parameter controlling the impact of gene expression on reaction 116 

bounds. 117 

2.4 Extraction of metabolic features 118 

 After a model for each condition was created, flux distributions were 119 

computed using FBA by maximising the biomass for producing cell lines included 120 

in the CHO model [3]. To perform FBA we employed the COBRA toolbox and a 121 

multi-level linear program structure [13,24]. All simulations were carried out in 122 

Matlab R2014b with the Gurobi solver. 123 

2.5 Feature processing and selection 124 

Principle Component Analysis (PCA) is a very effective statistical tool that uses 125 

an orthogonal transformation to reduce a set of variables to a smaller set of linearly 126 

uncorrelated variables, known as the principle components [14]. Here PCA was 127 

used to process metabolic flux features in order to extract informative metabolic 128 

features. 129 

Moreover, elastic net was applied to select relevant features, both at a gene 130 

expression and metabolic level [15]. Given an α in the interval ]0, 1] and a non-131 

negative λ, elastic net solves the following optimisation problem: 132 

𝑚𝑖𝑛𝛽0,𝛽 (
1

2𝑁
∑ (𝑦𝑖 − 𝛽0 − 𝑥𝑖

𝑇𝛽)2𝑁
𝑖=1 + 𝜆𝑃𝛼(𝛽)). (2) 

In this formula, x represents the gene expression and metabolic flux rates variables, 133 

y corresponds to measured metabolite yield and N is the total number of training 134 

conditions. Pα(β) is a regularisation term depending on a vector of linear 135 

coefficients β and on parameter α. Non-null entries of β resulting from this 136 

minimisation correspond to relevant features selected by elastic net. 137 

2.6 Training generalised linear models to predict metabolite/protein production 138 

Generalised linear models (GLM) were trained to predict lactate yield starting 139 

from poly-omics information [16]. A GLM gives an estimate of metabolite 140 

production yipred calculated as follows: 141 
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𝑦𝑖
𝑝𝑟𝑒𝑑

= 𝛽0 + 𝑥𝑖
𝑇𝛽. (3) 

 GLM accuracy was assessed by nested cross-validation, consisting of two 142 

cross-validation loops which together evaluate a selected model based on training 143 

data [17]. The nested loop selects the values of α and λ of elastic net on 5 training 144 

and test folds. The outer loop is used for model evaluation and is ran over 10 folds. 145 

GLM accuracy for each test fold was evaluated by computing the root-mean-146 

square error (RMSE) defined by the following formula:  147 

RMSE =√
∑ (𝑦𝑖

𝑝𝑟𝑒𝑑
−𝑦𝑖)

2
𝑛
𝑖=1

𝑛
, (4) 

where n is the number of test conditions in the fold. 148 

3. Results 149 

3.1. Metabolic model optimisation 150 

We validated our proposed approach on the prediction of lactate production, 151 

resorting to experimental data from the study of Clarke et al. [9]. We selected the 152 

conditions with both microarray and measured lactate production, obtaining 127 153 

conditions. In order to optimise metabolic flux information, we performed a 154 

sensitivity analysis on the gene expression mapping parameter γ in Equation (1). 155 

Specifically, we studied the Pearson correlation r between measured lactate 156 

accumulation in culture media and simulated lactate export rates for varying 157 

values of γ across several orders of magnitude. The maximum correlation 158 

coefficient obtained was r = 0.36 (p-value = 2.6·10-5). The relationships between 159 

these two quantities can be visualised in Figure 2a. We thus employed condition-160 

specific models with the optimal γ to generate fluxes for the following analysis. 161 

 162 

(a) (b) 

 Figure 2. Validation results of the proposed approach on lactate production prediction: (a) comparison 163 
between simulated lactate export through condition-specific GSMMs and measured lactate production; this 164 
step enables GSMMs optimisation for the target metabolite in the following step; (b) RMSE distribution plots 165 
for lactate production predictions as a function of employed data sources. Two outliers for the green box lie 166 
outside of the current scale. 167 
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3.2 Predictions of lactate production 168 

 To accurately predict lactate production in CHO cells, we employed elastic net 169 

and GLMs as described in the Methods section. We estimated the generalised 170 

prediction error by means of a 10-fold cross-validation, repeatedly swapping 171 

conditions used in training and in tests [17]. We calculated the RMSE of predicted 172 

lactate yield across the test conditions in each fold, which quantifies the average 173 

difference between predicted and experimentally measured lactate yield. We 174 

repeated this procedure under three data sources scenarios, where gene 175 

expression, metabolic fluxes and their combination was evaluated separately. The 176 

results are shown in Figure 2b and summarised in Table 1. Interestingly, although 177 

flux rates alone lead to poor predictions, if combined with gene expression they 178 

achieve the minor average and median RMSE across the 10 folds. In the latter case, 179 

associated RMSE distribution is significantly different to that obtained from gene 180 

expression alone on the basis of a one-tailed Wilcoxon rank sum test at a 5% 181 

threshold (p-value = 0.027) [18]. 182 

 183 

 Gene expression Flux rates 
Gene expression and 

flux rates 

Mean RMSE 0.19 1.08 0.14 

Median RMSE 0.17 0.26 0.13 

RMSE standard  

deviation 
0.06 2.41 0.05 

 184 

Table 1. Comparison of 10-fold cross-validation RMSE statistics for the prediction of lactate production from 185 
different data sources. Combining gene expression and metabolic flux data leads to best values for all 186 
statistical measures. These results correspond to those shown in Figure 2b. 187 

 188 

4. Discussion 189 

The growing demand for natural products in global healthcare requires 190 

advanced automation of CHO cell culture design for biotechnological industry to 191 

reach commercial-scale production levels. Notably, recent advances in metabolic 192 

modelling and in data-driven prediction algorithms have not been yet exploited in 193 

combination for this purpose. In this study, we started to explore this research line: 194 

the overall goal of the work was to develop a poly-omics approach capable of 195 

predicting metabolite/protein production in CHO cells. The approach comprises a 196 

GLM trained on gene expression data originating from cultures in varying 197 

conditions and on metabolic flux rates obtained in silico from FBA on a GSMM of 198 

CHO metabolism. The accuracy of our approach was evaluated in comparison to 199 

GLMs employing only a single type of data. This allowed us to show that 200 
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combining gene expression and metabolic fluxes improves accuracy compared to 201 

just using gene expression or metabolic fluxes separately.  202 

Generation of condition-specific metabolic information can in principle be 203 

achieved through various types of computational analysis. In this study, we used 204 

FBA as this is the most widely used technique to capture flux configurations in a 205 

growth steady state [2]. In principle, different techniques could potentially extract 206 

even more useful information, further improving final data-driven predictions. For 207 

instance, in a preliminary evaluation we tested also a modified version of 208 

parsimonious enzyme usage FBA minimising the norm-2 of reaction fluxes [22,23]. 209 

However, we observed that normal FBA achieved best results (data not shown). 210 

The main limitation of this work is represented by a scarce availability of large-211 

scale public data on CHO cells and by the prototypical state of present GSMMs. 212 

Proposed strategies for model refining are expected to lead to further prediction 213 

improvements [19].  With more comprehensive datasets, both in terms of number 214 

of samples and in terms of metabolic gene coverage, we expect our pipeline to 215 

vastly improve its predictive ability. Moreover, although our validation focussed 216 

on lactate production, the proposed methodological framework can be 217 

straightforwardly implemented around any target metabolite or protein.  218 

Despite the above-mentioned limitations, our results show that metabolism-219 

based machine learning methods can significantly improve the predictive power of 220 

common transcriptomic-only methods. This is due to the introduction of metabolic 221 

features coupled with transcriptomic features. The present study therefore 222 

represents a preliminary assessment that we plan to extend in future 223 

investigations. 224 

 225 

Acknowledgments: This work was partially supported by funding from BBSRC/EPSRC BioProNET. We thank 226 
Jonathan Welsh from CPI-NBMC for helpful discussions about CHO cell products.  227 

Author Contributions: C.A. and G.Z. conceived and designed the experiments; G.Z. and M.C. performed the 228 
experiments; G.Z. analysed the data; C.A. G.Z. and G.V. contributed analysis tools; G.Z., M.C. and C.A. wrote 229 
the paper. All authors read and approved the final version of the paper. 230 

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the 231 
design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and 232 
in the decision to publish the results. 233 

References 234 

1. Richelle A. and Lewis N.E. Improvements in protein production in mammalian cells from targeted 235 
metabolic engineering. Curr. Opin. Syst. Bio. 2017, 6, 1-6, doi:10.1016/j.coisb.2017.05.019. 236 

2. Orth J.D., Thiele I. and Palsson B.O. What is flux balance analysis? Nat. Biotech. 2010, 28, 245-248, 237 
doi:10.1038/nbt.1614. 238 

3. Hefzi H., Ang K.S., Hanscho M., et al. A Consensus Genome-scale Reconstruction of Chinese 239 
Hamster Ovary Cell Metabolism. Cell Syst. 2016, 3(5), 434-443.e8, doi:10.1016/j.cels.2016.10.020. 240 



The 2nd International Electronic Conference on Metabolomics (IECM-2), 20 November–27 November 2017; Sciforum 
Electronic Conference Series, Vol. 2, 2017 

8 

 

4. Martínez V.S., Dietmair S., Quek L.E., Hodson M.P., Gray P. and Nielsen L.K. Flux balance analysis 241 
of CHO cells before and after a metabolic switch from lactate production to consumption. Biotechnol. 242 
Bioeng. 2013, 10(2), 660-6, doi:10.1002/bit.24728. 243 

5. Rejc Ž., Magdevska L., Tršelič T., Osolin T., Vodopivec R., Mraz J., Pavliha E., Zimic N., Cvitanović 244 
T., Rozman D., Moškon M. and Mraz M. Computational modelling of genome-scale metabolic 245 
networks and its application to CHO cell cultures. Comp. Biol. Med. 2017, 88, 150-160, 246 
doi:10.1016/j.compbiomed.2017.07.005. 247 

6. Pan X., Dalm C., Wijffels R.H. and Martens D.E. Metabolic characterization of a CHO cell size 248 
increase phase in fed-batch cultures. Appl. Microbiol. Biotechnol. 2017, 101(22), 8101-8113, 249 
doi:10.1007/s00253-017-8531-y. 250 

7. Sengupta N., Rose S.T. and Morgan J.A. Metabolic flux analysis of CHO cell metabolism in the late 251 
non-growth phase. Biotechnol. Bioeng. 2011, 108(1), 82-92, doi:10.1002/bit.22890. 252 

8. Galleguillos S.N., Ruckerbauer D., Gerstl M.P., Borth N., Hanscho M. and Zanghellini J. What can 253 
mathematical modelling say about CHO metabolism and protein glycosylation? Comput. Struct. 254 
Biotechnol. J. 2017, 15, 212-221, doi:10.1016/j.csbj.2017.01.005. 255 

9. Clarke C., Doolan P., Barron N., Meleady P., O'Sullivan F., Gammell P., Melville M., Leonard M. and 256 
Clynes M. Large scale microarray profiling and coexpression network analysis of CHO cells 257 
identifies transcriptional modules associated with growth and productivity. J. Biotechnol. 2011, 155(3), 258 
350-359, doi:10.1016/j.jbiotec.2011.07.011. 259 

10. King Z.A., Lu J.S., Dräger A., Miller P.C., Federowicz S., Lerman J.A., Ebrahim A., Palsson B.O. and 260 
Lewis N.E. BiGG Models: A platform for integrating, standardizing, and sharing genome-scale 261 
models. Nucleic Acid Res. 2016, 44(D1), D515-D522, doi:10.1093/nar/gkv1049. 262 

11. Angione C. and Lió P. Predictive analytics of environmental adaptability in multi-omics network 263 
models. Sci. Rep. 2015, 5, 15147, doi:10.1038/srep15147. 264 

12. Angione C. Integrating splice-isoform expression into genome-scale models characterizes breast 265 
cancer metabolism. Bioinformatics 2017, btx562, doi:10.1093/bioinformatics/btx562. 266 

13. Schellenberger J., Que R., Fleming R.M.T., Thiele I., Orth, J.D., Feist, A.M., Zielinski D.C., Bordbar, 267 
A., Lewis, N.E., Rahmanian S., Kang J., Hyduke D.R. and Palsson B.O. Quantitative prediction of 268 
cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat. Prot. 2011, 6(9), 269 
1290-1307, doi:10.1038/nprot.2011.308. 270 

14. Joliffe I.T. Principal component analysis, Series: Springer Series in Statistics, 2nd ed.; Springer, New 271 
York, United states, 2002. 272 

15. Zou H. and Hastie T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B 273 
(Stat. Methodol.) 2005, 67, 301-320, doi:10.1111/j.1467-9868.2005.00503.x. 274 

16. McCullagh P. and Nelder J.A. Generalized linear models, 2nd ed.; Chapman and Hall, London, United 275 
Kingdom, 1989.  276 

17. Devijver P.A. and Kittler J. Pattern Recognition: A Statistical Approach; Prentice-Hall, London, United 277 
Kingdom, 1982. 278 

18. Hollander M. and Wolfe D.A. Nonparametric Statistical Methods; Hohn Wiley & Sons, Inc., Hoboken, 279 
United States, 1999. 280 



The 2nd International Electronic Conference on Metabolomics (IECM-2), 20 November–27 November 2017; Sciforum 
Electronic Conference Series, Vol. 2, 2017 

9 

 

19. Chowdhury R., Chowdury A. and Maranas C.D. Using Gene Essentiality and Synthetic Lethality 281 
Information to Correct Yeast and CHO Cell Genome-Scale Models. Metabolites 2015, 29;5(4), 536-70, 282 
doi:10.3390/metabo5040536. 283 

20. Vijayakumar S., Conway  M., Lió P. and Angione, C. Seeing the wood for the trees: a forest of 284 
methods for optimization and omic-network integration in metabolic modelling. Briefings in 285 
Bioinformatics 2017, bbx053, doi: 10.1093/bib/bbx053 286 

21. Opdam S., Richelle A., Kellman B., Li S., Zielinski D.C., Lewis N.E.. A Systematic Evaluation of 287 
Methods for Tailoring Genome-Scale Metabolic Models. Cell Systems 2017, 22;4(3), 318-29, doi: 288 
10.1016/j.cels.2017.01.010 289 

22. Lewis N.E., Hixson K.K., Conrad T.M., Lerman J.A., Charusanti P., Polpitiya A.D., Adkins J.N., 290 
Schramm G., Purvine S.O., Lopez‐Ferrer D., Weitz K.K.. Omic data from evolved E. coli are 291 
consistent with computed optimal growth from genome‐scale models. Molecular systems biology 2010, 292 
6(1):390, doi: 10.1038/msb.2010.47 293 

23. Kim M.K., Lane A., Kelley J.J., Lun D.S. E-Flux2 and SPOT: validated methods for inferring 294 
intracellular metabolic flux distributions from transcriptomic data. PloS one 2016, 11(6):e0157101, doi: 295 
10.1371/journal.pone.0157101 296 

24. Angione C., Conway M., Lió P. Multiplex methods provide effective integration of multi-omic data 297 
in genome-scale models. BMC bioinformatics 2016, 17(4):83, doi: 10.1186/s12859-016-0912-1 298 

© 2017 by the authors. Submitted for possible open access publication under the  299 
terms and conditions of the Creative Commons Attribution (CC-BY) license 300 
(http://creativecommons.org/licenses/by/4.0/). 301 


