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Abstract: We study the Zeeman effect on entanglement of non-equilibrium finite-spin systems with
external fields using a method based on thermofield dynamics (TFD). For this purpose, the extended
density matrices and extended entanglement entropies of two systems with either non-competing or
competing external fields are calculated according to the dissipative von Neumann equation, and the
numerical results are compared. Consequently, through the “twin-peaks” oscillations of the quantum
entanglement, we have illustrated the Zeeman effect on the entanglement of non-equilibrium
finite-spin systems with competing external fields in the TFD algorithm.
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1. Introduction

The entanglement of quantum states is a correlation between multiple systems that is peculiar to
quantum mechanics [1]. The behavior of entangled quantum states is called “quantum entanglement”.
It plays important roles in quantum computation and quantum information [2], and is useful in
applications of the AdS/CFT correspondence [3,4]. Entanglement entropy is a measure of the strength
of quantum entanglement. It has been used as an order parameter of quantum spin systems [5,6].

A different method to analyze quantum entanglement using thermofield dynamics (TFD) [7–9]
was proposed in Ref. [10], and its applicability confirmed in Ref. [11]. In this treatment of quantum
entanglement with TFD, an extended density matrix is defined on the doubled Hilbert space (physical
and ancillary Hilbert spaces), and examined for some simple cases [10]. The TFD-based method
allows the entanglement states to be easily understood, because the intrinsic elements caused by
quantum entanglement can be extracted from the extended density matrix in this formulation.
Consequently, it was found that the intrinsic quantum entanglement can be distinguished from
the thermal fluctuations included in the definition of ordinary quantum entanglement at finite
temperatures. Based on the analysis presented in Ref. [10], it was argued that the general TFD
formulation of the extended density matrix is applicable, not only to equilibrium states, but also
to non-equilibrium states. The extended density matrix was calculated as a simple example in
Ref. [10] for the case of equilibrium finite-spin systems with external fields. In Ref. [11], it was
shown that the extended entanglement entropy, which was obtained by using the extended density
matrix, could be decomposed into parts from thermal (but classical) fluctuations and from quantum
entanglement, as in Equations (16)–(18). In the present communication, we prove that the value
of the extended entanglement entropies of the non-equilibrium finite-spin systems is positive
semi-definite. We then obtain the extended entanglement entropies of TFD as a well-defined measure
of quantum entanglement.

Moreover, in Ref. [10], the authors gave an example of a frustration effect on the entanglement of
equilibrium finite-spin systems that is caused by competing external fields. They compared a system
that does not contain a competing effect between the interaction and the external fields with one that
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does contain it. They concluded that this competing effect is a kind of frustration, in relation to the
partial recovery of the broken symmetry of the spin inversion, by using the equilibrium density matrix.
However, in Ref. [10], because only a two-spin system is considered, we feel that it is incorrect to
refer the effect of external fields as “frustration”. In addition, the effect of the external fields was
analyzed only in an equilibrium two-spin system, and not in a non-equilibrium two-spin system [10].
The effects of external magnetic fields have generally been considered among the Zeeman effects. Thus,
the Zeeman effect on the entanglement of non-equilibrium systems with external fields remains of
interest. In the present communication, we therefore investigate, exhaustively, the extended density
matrices and entanglement entropies of non-equilibrium spin systems with both non-competing and
competing external fields based on the general TFD algorithm. By comparing the quantities for the
non-competing and competing cases, we demonstrate the Zeeman effect on the dissipative dynamics of
the entanglement through “twin-peaks” oscillations of the extended density matrices and the extended
entanglement entropies. Furthermore, the origin and the generality of the “twin-peaks” oscillations
are argued by using the extended entanglement entropies.

This paper is organized as follows: we introduce the extended density matrices of the
non-equilibrium systems with external fields in the next section and examine their properties. In
Section 3, we obtain the extended entanglement entropies of non-equilibrium spin systems with
competing and non-competing external fields, and discuss the numerical results. The last section is
devoted to discussion and conclusions.

2. Extended Density Matrices of Non-Equilibrium Finite-Spin Systems with External Fields

The Zeeman Effects was originally studied in the Ising spin-glass model, which is described by
the Hamiltonian

H = − ∑
〈i, j〉

JijSi · Sj −∑
i

hi · Si, (1)

where Jij is the strength of spin interaction, hi is the external magnetic field, and 〈i, j〉 express the pairs
of nearest neighbors. Here, the Hamiltonian is the most simple separation of Equation (1). Consider the
S = 1/2 spin system described by the Hamiltonian [10]

H := −JSA · SB − gµB (HASz
A + HBSz

B) , (2)

which involves the spin operators, SA = (Sx
A, Sy

A, Sz
A) and SB = (Sx

B, Sy
B, Sz

B) of the subsystems A and B,
respectively, where g is the Lande factor, µB the Bohr magneton, and HA and HB are the components
of the external fields conjugate to SA and SB, respectively. To examine the Zeeman effect on the
entanglement, Ref. [10] recognized that the two systems with Hamiltonians, Hnc andHc, should be
compared for the cases of a non-competing external field HA = HB = H and competing external field
HA = −HB = H, respectively. As can also be seen from Equation (2), the spin inversion symmetry of
these systems is broken by these external fields in the Hamiltonian. In a forthcoming analysis exploring
the Zeeman effect on the dissipative dynamics of entanglement, the partial recovery of this broken
symmetry will play an important role.

The state, |s〉, of the total system is defined by the direct product, |s〉 = |sA, sB〉 = |sA〉|sB〉.
Using the base {|++〉, |+−〉, | −+〉, | − −〉}, the matrix form of the Hamiltonian Equation (2) is
expressed as

Hnc = −JSA · SB − gµBH
(
Sz

A + Sz
B
)

=
(
− J

4 − gµBH
)
|++〉〈++ |+

(
− J

4 + gµBH
)
| − −〉〈− − |

+ J
4 (|+−〉〈+− |+ | −+〉〈−+ |)− J

2 (|+−〉〈−+ |+ | −+〉〈+− |)
(3)
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for the non-competing case and

Hc = −JSA · SB − gµBH
(
Sz

A − Sz
B
)

= − J
4 (|++〉〈++ |+ | − −〉〈− − |)

+
(

J
4 − gµBH

)
|+−〉〈+− |+

(
J
4 + gµBH

)
| −+〉〈−+ |

− J
2 (|+−〉〈−+ |+ | −+〉〈+− |)

(4)

for the competing case.
Next, consider non-equilibrium systems with dissipation, described by the Hamiltonian of

Equation (2). The time dependence of the ordinary density matrix, ρα(t), of these systems is given by
the dissipative von Neumann equation [12,13]

ih̄
∂

∂t
ρα(t) = [Hα, ρα(t)]− ε

(
ρα(t)− ρα

eq

)
, (5)

where ε is a dissipation parameter, α “nc” for the non-competing case or “c” for the competing case,
and ρα

eq the ordinary density matrix of the equilibrium systems [10]. The solution of Equation (5) is
then expressed as

ρα(t) = e−εtUα†(t)ρ0Uα(t) + (1− e−εt)ρα
eq, (6)

for an arbitrary initial density matrix, ρ0, where the unitary operator, Uα(t) := eiHαt/h̄, denotes

Unc(t) = eiωt/4
(

exp
(
−i(ω+2gµB H/h̄)t

2

)
|++〉〈++ |

+ exp
(
−i(ω−2gµB H/h̄)t

2

)
| − −〉〈− − |

+ cos ωt
2 (|+−〉〈+− |+ | −+〉〈−+ |)

− i sin ωt
2 (| −+〉〈+− |+ |+−〉〈−+ |)

)
(7)

for the non-competing case and

Uc(t) = eiωt/4

e−iωt/2 (|++〉〈++ |+ | − −〉〈− − |)

+

cos

(
t
√

4g2 H2µ2
B+ω2 h̄2

2h̄

)
−

2igHµB sin

(
t
√

4g2 H2µ2
B+ω2 h̄2

2h̄

)
√

4g2 H2µ2
B+ω2 h̄2


×|+−〉〈+− |

+

cos

(
t
√

4g2 H2µ2
B+ω2 h̄2

2h̄

)
+

2igHµB sin

(
t
√

4g2 H2µ2
B+ω2 h̄2

2h̄

)
√

4g2 H2µ2
B+ω2 h̄2


×| −+〉〈−+ |

−
iωh̄ sin

(
t
√

4g2 H2µ2
B+ω2 h̄2

2h̄

)
√

4g2 H2µ2
B+ω2 h̄2

(| −+〉〈+− |+ |+−〉〈−+ |)



(8)

for the competing case. Here, ω := J/h̄. The explicit expression for ρα(t) in Equation (6) is complicated
for an arbitrary initial condition and it is difficult to understand its physical meaning. Hence, we will,
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for the sake of simplicity, hereafter confine the discussion to the initial condition ρ0 = |+−〉〈+− |.
Inserting Equations (7) or (8), along with the initial condition, into Equation (6), we then obtain

ρnc(t) = e−εt

2

(
2eK(eεt−1)

eK(e2h+eh+1)+eh

(
e2h|++〉〈++ |+ | − −〉〈− − |

)
+

(
(eεt−1) cosh( K

2 )
cosh( K

2 )+cosh(h)eK/2 + cos ωt + 1
)
|+−〉〈+− |

+

(
(eεt−1) cosh( K

2 )
cosh( K

2 )+cosh(h)eK/2 − cos ωt + 1
)
| −+〉〈−+ |

+

(
eh(eεt−1)(eK−1)
eK(e2h+eh+1)+eh − i sin ωt

)
|+−〉〈−+ |

+

(
eh(eεt−1)(eK−1)
eK(e2h+eh+1)+eh + i sin ωt

)
| −+〉〈+− |

)
,

(9)

for the non-competing case or

ρc(t) = e−εt

2

(
eK/2(eεt−1)

eK/2+cosh(L) (|++〉〈++ |+ | − −〉〈− − |)

+

 16LeL+εt/2 sinh( εt
2 )(h sinh(L)+L cosh(L))

2eK/2+L+e2L+1
+K2 cos( 2Lt

K )−K2+8L2

4L2


×|+−〉〈+− |

+

 8LeL+εt/2 sinh( εt
2 )(L cosh(L)−h sinh(L))

2eK/2+L+e2L+1
+K2 sin2( Lt

K )
2L2

 | −+〉〈−+ |

+ K
4L

(
4h sin2( Lt

K )
L +

2(e2L−1)(eεt−1)
2eK/2+L+e2L+1

− 2i sin
(

2Lt
K

))
×|+−〉〈−+ |

+ K
4L

(
4h sin2( Lt

K )
L +

2(e2L−1)(eεt−1)
2eK/2+L+e2L+1

+ 2i sin
(

2Lt
K

))

×| −+〉〈+− |
)

,

(10)

for the competing case, where the scaled time, ωt, and dissipation rate, ε/ω, have been used.
In addition we have introduced the definitions K := βJ = βωh̄, h := βgµBH, and L :=

√
h2 + K2/4.

The extended density matrix, ρ̂α, in the TFD doubled Hilbert space was defined in Ref. [10] as

ρ̂α := |Ψ〉〈Ψ|, |Ψ〉 := (ρα(t))1/2 ∑s |s, s̃〉 = (ρα(t))1/2 ∑s |s〉|s̃〉, (11)

using the ordinary density matrix, ρα(t) in Equation (6). Here, {|s〉} is an orthogonal complete set in
the original Hilbert space and {|s̃〉} the same set in the ancillary Hilbert space of TFD [14,15]. If the
entangled subsystems A and B are being examined, each of the |s〉 and |s̃〉 states is represented as a
direct product: |sA, sB〉 = |sA〉|sB〉 and |s̃A, s̃B〉 = |s̃A〉|s̃B〉, respectively.

According to the matrix algebra of ρα(t) developed in Ref. [10], we then obtain the extended
density matrix,
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ρ̂α
A = bα

d1|+〉〈+||+̃〉〈+̃|+ bα
d2|−〉〈−||−̃〉〈−̃|

+bα
cf (|+〉〈−||+̃〉〈−̃|+ |−〉〈+||−̃〉〈+̃|)

+bα
qe (|+〉〈+||−̃〉〈−̃|+ |−〉〈−||+̃〉〈+̃|) ,

(12)

where the matrix elements, bα
d1, bα

d2, bα
cf, and bα

qe, are obtained as analytic functions of H, ε, t, and
β, respectively. They correspond to the two diagonal elements (d1 and d2), classical and thermal
fluctuations (cf), and quantum entanglement (qe) of ρ̂α

A, respectively. Their expressions are so
complicated that we show only the numerical results in Figure 1 for the non-competing cases and in
Figure 2 for the competing cases. The asymptotic behaviors of bα

d1, bα
d2, bα

cf, and bα
qe at t→ ∞ correspond

to those of the equilibrium systems as follows:

limt→∞ bnc
d1 =

4eh+K+(eK/2+1)
2

4eK(2 cosh(h)+1)+4 ,

limt→∞ bnc
d2 =

(eh+4)eK+2eh+ K
2 +eh

4((eh+e2h+1)eK+eh)
,

limt→∞ bnc
cf =

(eh+1)(eK/2+1)e
h+K

2

2((eh+e2h+1)eK+eh)
,

and limt→∞ bnc
qe =

(eK/2−1)
2

4eK(2 cosh(h)+1)+4

(13)

and
limt→∞ bc

d1 = e−L

32L2(eK/2+cosh(L))

(
4L
((

e2L − 1
)√

4L2 − K2

+2L
(

2e
K
2 +L + e2L + 1

))
− K2 (eL − 1

)2
)

,

limt→∞ bc
d2 = e−L

32L2(eK/2+cosh(L))

(
4L
(

2L
(

2e
K
2 +L + e2L + 1

)
−
(
e2L − 1

)√
4L2 − K2

)
− K2 (eL − 1

)2
)

,

limt→∞ bc
cf =

(eL+1)e
1
4 (K+2L)

2e
K
2 +L+e2L+1

,

and limt→∞ bc
qe =

K2(eL−1)
2

16L2
(

2e
K
2 +L+e2L+1

) ,

(14)

respectively. The asymptotic values with K−1 = (βJ)−1 = 0.7 and h = βgµBH = 3/7, which are
obtained from Equations (13) and (14), are shown in Figures 1 and 2. It is worth mentioning that the
findings of Figures 1a–c and 2a–c may be in harmony with the relaxation processes of entanglement by
dissipation.

As can be seen from Figure 1d, which shows the non-dissipation case (ε = 0), bα
cf vanishes

identically. On the other hand, bnc
d1, bnc

d2, and bnc
qe show a kind of “classical-quantum crossover”

oscillation in Ref. [10]. However, as can be seen from Figure 2d, which shows the non-dissipation case
(ε = 0), bα

cf vanishes identically, while the bc
qe curve displays a “twin-peaks” oscillation, which is a

new type.
In Ref. [10], the following results were obtained, illustrating the equilibrium case: (i) In the

non-competing systems (for zero temperature), the external field, H, breaks the spin inversion
symmetry and the parameter bnc

d1 = 1, because the quantum entanglement bnc
qe = 0. (ii) In the competing

system, the level splitting creates a non-zero finite entanglement, bc
qe 6= 0, for zero temperature, even in

a finite external field, H. (iii) The parameter, bc
d1 , which expresses the probability weight of the up-state,

is smaller than the maximum value, 1.0. According to these observations, Ref. [10] demonstrated a
typical example of entanglement caused by the external field.
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ωt

bnc
d1

bnc
cf

bnc
d2

bnc
qe

(a)
ωt

bnc
d1

bnc
cf

bnc
d2

bnc
qe

(b)

ωt

bnc
d1

bnc
cf

bnc
d2

bnc
qe

(c)
ωt

bnc
d1 bnc

d2

bnc
qe

(d)

Figure 1. Time dependence of the matrix elements, bnc
d1(-----), bnc

d2(---), bnc
cf (···), and bnc

qe(-· -), in dissipative
and non-dissipative systems with K−1 = (βJ)−1 = 0.7 and h = βgµB H = 3/7, for the non-competing
cases. Parts (a–c) show cases with a scaled dissipation rate ε/ω = 1, 0.1, and 0.01, respectively.
The dot-dot-dashed lines (-·· -) in parts (a,b) represent the asymptotes of the bnc

d1, bnc
cf , bnc

d2, and bnc
qe

curves, respectively. In part (d), which is the non-dissipation case (ε = 0), bnc
cf vanishes identically. On

the other hand, bnc
d1, bnc

d2, and bnc
qe show a kind of “classical-quantum crossover” oscillation.

ωt

bc
d1

bc
cf

bc
d2 bc

qe

(a)
ωt

bc
d1

bc
cf

bc
d2

bc
qe

(b)

ωt

bc
d1

bc
cf

bc
d2

bc
qe

(c)
ωt

bc
d1

bc
d2

bc
qe

(d)

Figure 2. Time dependence of the matrix elements, bc
d1(-----), bc

d2(---), bc
cf(···), and bc

qe(-· -), in dissipative
and non-dissipative systems with K−1 = (βJ)−1 = 0.7 and h = βgµB H = 3/7 for the competing
cases. Parts (a–c) show cases with a scaled dissipation rate of ε/ω = 1, 0.1, and 0.01, respectively.
The dot-dot-dashed lines (-·· -) in parts (a,b) represent the asymptotes of the bc

d1, bc
cf, bc

d2, and bc
qe curves,

respectively. In part (d), the non-dissipation case (ε = 0), bc
cf vanishes identically, while the bc

qe curve
displays a “twin-peaks” oscillation.
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Therefore, also in the present analysis it seems reasonable to conclude that the competing
“twin-peaks” oscillatory behavior is a consequence of the partial recovery of the spin inversion
symmetry even in the dissipative dynamics.

3. Extended Entanglement Entropies of Non-Equilibrium Finite-Spin Systems with External
Fields

The extended entanglement entropy is defined as [10]

Ŝα := −kBTrA [ρ̂α
A log ρ̂α

A] , (15)

using ρ̂α
A in Equation (12). Inserting Equation (12) into Equation (15) and subsequent simplification

eventually yields
Ŝα = Ŝα

cl + Ŝα
qe, (16)

where

Ŝα
cl := −kB

(√
4
(
bα

cf

)2
+
(
bα

d1 − bα
d2

)2 arccoth bα
d1+bα

d2√
4(bα

cf)
2
+(bα

d1−bα
d2)

2

+
bα

d1+bα
d2

2 log
(

bα
d1bα

d2 −
(
bα

cf

)2
))

,
(17)

and

Ŝα
qe := −2kBbα

qe log bα
qe, (18)

respectively. In Equations (16)–(18), the expressions for Ŝα, the classical and thermal fluctuation
parts, Ŝα

cl, and the quantum entanglement part, Ŝα
qe, also involve analytic functions of t, β, ε, and ω.

However, these expressions are quite complicated. Therefore, we show the numerical behavior of
Ŝα, Ŝα

qe, and bα
qe for a few scenarios with K−1 = (βJ)−1 = 0.7 and h = βgµBH = 3/7 in Figure 3

for the non-competing case and in Figure 4 for the competing case. The asymptotic behaviors of Ŝα

and Ŝα
qe as t → ∞ correspond to those of equilibrium systems obtained by inserting Equations (13)

and (14) into Equations (16)–(18). The asymptotic values of Ŝα and Ŝα
qe with K−1 = (βJ)−1 = 0.7

and h = βgµBH = 3/7, obtained from Equations (16)–(18), are displayed in Figures 3 and The data
in Figures 3a–c and 4a–c are in good agreement with the relaxation phenomena of entanglement
by dissipation.

In the non-dissipative systems, (ε = 0), Ŝα
qe in Equation (18) reduces to

Ŝnc
qe =

kB

2
sin2 t · log

(
4 csc2 t

)
, (19)

for the non-competing case and

Ŝc
qe =

kB(cos(
√

4h2+1t)+8h2+1)
(4h2+1)2 sin2

(
1
2

√
4h2 + 1t

)
×
(

log
(

2 csc2( 1
2

√
4h2+1t)

cos(
√

4h2+1t)+8h2+1

)
+ 2 log(4h2 + 1)

) (20)

for the competing case. As can be seen from Equations (19) and (20), both the K and H dependences of
Ŝnc

qe at ε = 0 disappear and the K dependence of Ŝc
qe at ε = 0 disappears. The time dependence of Ŝα

and Ŝα
qe at ε = 0 is shown in Figure 3d for the non-competing case and in Figure 4d for the competing

case. It is apparent from these figures that the curves (Ŝα and Ŝα
qe), showing entanglement, have the

same phase. However, their amplitudes differ. Especially, the H dependences of Ŝc
qe at ε = 0 are

displayed in Figure 5. From this observation we infer that the “twin-peaks” oscillation is an example
of quantum entanglement caused by level splitting.
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ωt

Ŝnc

Ŝnc
qe

(a)
ωt

Ŝnc

Ŝnc
qe

(b)

ωt

Ŝnc

Ŝnc
qe

(c)
ωt

Ŝnc

Ŝnc
qe

(d)

Figure 3. Time dependence of Ŝnc(-----) and Ŝnc
qe(---) in dissipative and non-dissipative systems with

K−1 = (βJ)−1 = 0.7 and h = βgµB H = 3/7 for the non-competing cases. Parts (a–c) show cases with
scaled dissipation rates of ε/ω = 1, 0.1, and 0.01, respectively. The dot-dot-dashed lines (-·· -) in parts
(a–c) represent the asymptotes of the Ŝnc and Ŝnc

qe curves. In part (d), which is the non-dissipation case
(ε = 0), all the curves have the same phase. In these and all subsequent plots, kB = 1.

Ŝc

Ŝc
qe

ωt

(a)
ωt

Ŝc

Ŝc
qe

(b)

ωt

Ŝc

Ŝc
qe

(c)
ωt

Ŝc

Ŝc
qe

(d)

Figure 4. Time dependence of Ŝc(-----) and Ŝc
qe(---) in dissipative and non-dissipative systems with

K−1 = (βJ)−1 = 0.7 and h = βgµB H = 3/7 for the competing cases. Parts (a–c) show cases with scaled
dissipation rates of ε/ω = 1, 0.1, and 0.01, respectively. The dot-dot-dashed lines (-·· -) in parts (a–c)
represent the asymptotes of the Ŝc and Ŝc

qe curves, respectively. In part (d), which is the non-dissipation
case (ε = 0), all the curves have the same phase and show a kind of “twin-peaks” oscillation.
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Figure 5. H dependences of Ŝc
qe in non-dissipative system (ε = 0) at ωt = 1, · · · , 5

√
2
17 π. Here,

ωt = 5
√

2
17 π = 5.38779 · · · is the cycle time of the oscillation in Figure 2d.

4. Discussion and Conclusions

In this communication, we have examined the extended density matrix and the extended
entanglement entropies of non-equilibrium spin systems with non-competing and competing
external fields based on the TFD formulation. These results are summarized in Figures 1–5. As
is evident from the results, the values of Ŝα

qe are positive semi-definite. In particular, according to
Equations (12) and (13), the equilibrium-extended entropies, lim

t→∞
Ŝα

qe, vanish at H → 0. From these

observation we infer that Ŝα
qe are well-defined measures of the quantum entanglement. This is also the

condition that the entanglement measures of general quantum systems should satisfy.
Figures 1 and 3 show that the behaviors of Ŝnc, Ŝnc

qe, and bnc
qe differ little from those with no external

fields [10,11], and are not indicative of the Zeeman effect. This is due to the lack of competition
between the interaction, −JSA · SB, and the external fields, −gµBH

(
Sz

A + Sz
B
)
, in the non-competing

Hamiltonian,Hnc in Equation (3). The spin inversion symmetry is still unbroken for the non-competing
case. On the other hand, it is clear from Figures 2 and 4 that the behaviors of Ŝc, Ŝc

qe, and bc
qe differ

from those with no external field. Specifically, Figures 2d and 4d show a “twin-peaks” oscillation with
the same phase. This “twin-peaks” oscillation may be caused by the H dependences of Ŝc

qe at ε = 0,
which are shown in Figure 5. These results show that the competing Hamiltonian,Hc in Equation (4),
contains competing effects in a non-equilibrium system leading to the partial recovery of the spin
inversion symmetry in the dissipative dynamics. This is recognized as the origin of the “twin-peaks”
oscillation in the present model.

In the present communication, the Hamiltonian was the most simple separation of Equation (1).
Using the replica trick and the Sherrington and Kirkpatrick mean-field solution [16–18], the free-energy
and the order parameter of the equilibrium system of Equation (1) have been examined. However, these
methods involve several serious problems, such as replica-symmetry breaking, ergodicity breaking,
negative entropy at low temperatures, etc. On the other hand, the method presented here should
be independent of the problem. Therefore, one can extend the method developed here to study the
quantum entanglement in other spin systems. Furthermore, to clarify how general the appearance of
“twin-peaks ” oscillations is in spin systems, it is necessary to try the present method based on TFD in
the above general spin-glass models. These extensions are currently under consideration.
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