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Abstract: Different notions of entropy can be identified in different communities: (i) the 
thermodynamic sense, (ii) the information sense, (iii) the statistical sense, (iv) the disorder sense, 
and (v) the homogeneity sense. Especially the “disorder sense” and the “homogeneity sense” relate 
to and require the notion of space and time. One of the few prominent examples relating entropy to 
geometry and to space is the Bekenstein-Hawking entropy of a Black Hole. Although being 
developed for the description of a physics object—a black hole—having a mass, a momentum, a 
temperature, a charge etc. absolutely no information about these attributes of this object can 
eventually be found in the final formula. In contrast, the Bekenstein-Hawking entropy in its 
dimensionless form is a positive quantity only comprising geometric attributes like an area 
A-which is the area of the event horizon of the black hole-, a length LP—which is the Planck 
length-and a factor 1/4. A purely geometric approach towards this formula will be presented. The 
approach is based on a continuous 3D extension of the Heaviside function, with this extension 
drawing on the phase-field concept of diffuse interfaces. Entropy enters into the local, statistical 
description of contrast respectively gradient distributions in the transition region of the extended 
Heaviside function definition. The structure of the Bekenstein-Hawking formula eventually is 
derived for a geometric sphere based on mere geometric-statistic considerations. 
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1. Introduction 

Different senses of entropy [1] lead to 5 different notions and perceptions of entropy: the 
Thermodynamic sense, the Information Sense, the Statistical Sense, the Disorder Sense, and the 
Homogeneity Sense. 

Especially the “disorder sense” and the “homogeneity sense” relate to and require the notion of 
space and time. There is thus a need to introduce explicit spatial information into formulations of 
entropy. 

In general the formulations of entropy used in statistical mechanics and information theory, 
however, do not comprise any explicit relation to space or time in the respective formulas. A 
prominent example actually relating entropy to geometry and space in is the Bekenstein-Hawking 
entropy of a Black Hole [2–5]. The entropy of a black hole has been described to base on microstates 
[6] indicating a microscopic origin. 

The formulation of the entropy of a black hole plays an important role in the holographic 
principle [7–9] and in current entropic-gravity concepts [10,11] describing gravity as an emergent 
phenomenon. 

Although being developed for the description of a physics object—a black hole—having a mass, 
a momentum, a temperature, a charge etc. absolutely no information about these attributes of this 
object can eventually be found in the final formula. In contrast, the Bekenstein-Hawking entropy SBH 
in its dimensionless form [12] is a positive quantity only comprising geometric attributes like an area 
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A-which is the area of the event horizon of the black hole-, a length LP—which is the Planck 
length-and a factor 1/4: ܵ஻ு = ௣ଶܮ4ܣ  (1) 

Thus there might be a chance for purely geometric approach towards this formula. Such an 
approach is attempted in the present article. The approach is based on a continuous 3D extension of 
the Heaviside function and the phase-field method describing diffuse interfaces. 

2. A Geometric Object 

A 1-dimensional object is a line which is confined by a boundary consisting of two points. A 
2-dimensional object can be defined as an area being confined by a boundary—the 
circumference—which is a line. A 3-dimensional object is a volume which also is confined by a 
boundary-its surface—which is an area. Any boundary distinguishes the object region of space from 
the “non-object” region. For an object with dimension n its boundary has the dimension n-1. Besides 
these two fundamental characteristics—bulk and boundary—(e.g., volume/surface, 
area/circumference, length/endpoints) geometric objects have no further physics attributes. 
Especially geometric objects do not have attributes like mass, charge, spin, and–further—they do not 
reveal any intrinsic structure. The following chapters for reason of simplicity and didactics 
will—without limiting the generality of the concept—limit the discussion to the case of a geometric 
sphere. 

3. Sharp Interface Description of a Geometric Object 

A common way to describe a sphere—or any other geometric object—is to use the Heaviside 
function Θ(x) [13], Figure 1: 

 

Figure 1. Scheme of the Heaviside function Θ(x). This function takes the value 1 wherever the 
object/sphere is present and 0 else. 

The volume V of a sphere with radius r0 in spherical coordinates is then given by ܸ = ම(ݎ − ݀ݎଶ݀ݎ(଴ݎ  (2) 

with dΩ being the differential solid angle: ݀߆݀߆݊݅ݏ =  (3) ߗ݀

The Heaviside function cuts off any contributions of the integrand being larger than r0 and thus 
reduces the boundaries of the integral from infinity down to r0: ܸ = ߨ4 න (ݎ − ஶݎଶ݀ݎ(଴ݎ

଴ = ߨ4 න ௥బ଴ݎଶ݀ݎ = 43 ߨ  ଴ଷ (4)ݎ
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The surface of this sphere a can be calculated using the gradient of the Heaviside function. 
Gradients/derivatives of ߆  only appear—i.e., have non-zero values—at the positions r0 of the 
boundaries of an object. In fact, actually the definition of the Dirac delta function is based on the 
distributional derivative of the Heaviside function Θ(x) [14] as  (ݔ)ߜ: = ݔ݀(ݔ)߆݀  (5) 

Using Equation (5) the surface A of the sphere—and also the surface of more complex geometric 
objects—can easily be calculated as follows ܣ = ම (ݎ − ݀ݎଶ݀ݎ(଴ݎ = 4  ଴ଶ (6)ݎ

This is the first term being relevant for the entropy of the black-hole—the area of the event 
horizon—i.e., the boundary making the black-hole distinguishable from the “non-black hole” or a 
“sphere” distinguishable from the “non-sphere”. The following sections aim to identify a way to 
derive or at least to provide reasoning for the other parameters i.e., for Lp and eventually for the 
factor ¼ on the basis of a description of a geometric sphere. 

4. Phase-Field Description of a Geometric Object 

Phase-field models [15,16] in the last decades have gained tremendous importance in the area of 
describing the evolution of complex structures like e.g. dendrites during phase-transitions.They 
even entered into materials engineering and process design tasks [17]. Similar to the Heaviside 
function Θ the phase-field Φ is a field describing the presence respectively the absence of an object, 
Figure 2. 

 

Figure 2. Scheme of the phase-field function Φ(x). This function takes the value 1 wherever the 
object/sphere is present and 0 else. In contrast to the Heaviside function it reveals a continuous 
transition over a finite—though very small—interface thickness η. 

In contrast to the Heaviside function being based on a mathematically sharp transition between 
the two states “1” and “0”, the phase field approach is based on a continuous transition between 
these two states within a transition width η. In case of a very narrow transition width, the 
phase-field function Φ(x) can be considered as a continuous, differentiable and 3D formulation of the 
Heaviside function Θ(x): ߔ ݎ) − ~(଴ݎ ݎ)߆ −  ଴) (7)ݎ

ݎ) ߔ − ~(଴ݎ ݎ)߆ − (଴ݎ ∶= ݎ)ߜ −  ଴) (8)ݎ

The shape of the transition in phase-field models depends on the choice of the potential in the 
model. A double-well potential e.g., leads to a hyperbolic-tangent profile while a double obstacle 
potential leads to a cosine profile of the (x) function. However, nothing is a priori known neither 
about the type of potential nor about the shape of this function in the transition region also in 
phase-field models, Figure 3: 
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Figure 3. Nothing is a-priori known about the shape of the functions in the small transition width 
between the two states. It should be noted that two state systems have a major importance also in 
quantum mechanical systems and transitions. 

5. Entropy of Interfaces 

General considerations about the shape of the phase-field function in the transition region 
between 0 and η (resp. between r0 and r0 + η) require continuity of both Φ(x) and Φ(x) at the 
transition to the bulk regions i.e.,: 

for (0)ߔ :(࢞)ߔ = 1 and (ߟ)ߔ = 0  

for (ݔ)ߔ: (0)ߔ = 0 and (ߟ)ߔ = 0  

for ݈(ݔ)ߔ: ݈(0)ߔ = 0 and ݈ߔ() = 0  

 is a small, non-zero, positive scaling constant having the unit of a length [L] ࢒ •
• (ݔ)ߔ has the dimension of an inverse length [L−1] 
• ݈ (ݔ)ߔ defines the contrast between two regions. It is a dimensionless entity and takes values 

between 0 and 1 
• Φ also has no physics units. It takes values between 0 and 1. 

Especially “contrast” will take an important role throughout the following sections. From a 
philosophical/epistemological point of view, “contrast” provides the basis for any type of 
categorization or classification and thus the basis for any knowledge. From a physics/mathematics 
point of view its property of being a dimensionless variable seems very important as it can enter into 
the argument of the logarithm in this way. 

5.1. Discrete Descriptions of the Entropy of an Interface 

As a first step towards the description of the entropy of an interface, different models of crystal 
growth [18], the Jackson model, the Kossel crystal, and the Temkin model will be discussed in more 
detail. The interface between a solid and a liquid here serves as an instructive example for any type 
of transition between two different states. 

The Jackson model [19] is used to describe the facetted growth of crystals. It assumes an ideal 
mixing of the two states (solid/liquid) in a single interface layer between the bulk states, Figure 4. 
The entropy of this interface layer in the Jackson model is described as an ideal mixing entropy being 
identical with the Shannon entropy of a binary information system: ܵ = ߔ݈݊ߔ− − (1 − )݈݊(1 −  (9) (ߔ
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Figure 4. The entropy distribution of the Jackson model generates Φ = 0.5 as the most probable value 
in the interface region. 

The Kossel model (see e.g., [18]) is a discrete model being used to describe the growth of 
crystals with diffuse interfaces, Figure 5. The Kossel model provides the basis for Temkin‘s discrete 
formulation of the entropy of a diffuse interface. 

 

Figure 5. The Kossel model assumes attachment of solid on existing solid only i.e. it does not allow 
for any overhang. Using multiple layers it describes a stepwise transition from 100% solid (the 4 left 
layers) to 100% liquid (from layer 11 to the right). The projection of layers 5 to 10 yields a decreasing 
fraction of solid with increasing layer number. 

The Temkin model [20] is used to describe growth of crystals with diffuse interfaces. It assumes 
ideal mixing between two adjacent states/layers in a multilayer interface. The Temkin model 
describes the entropy of the diffuse interface as: 

ܵ = − ෍ (௡ିଵஶ
௡ୀିஶ −௡)݈݊(௡ିଵ− ௡) (10) 

It basically allows for an infinite number of interface layers and recovers the Jackson model as a 
limiting case for a single interface layer. Accordingly it represents a more general approach. 

Highlighting the importance of the Temkin model it can be stated that it introduces 
neighborhood relations between adjacent layers and thus an “order“ respectively a “disorder” sense. 
Most important, however, it obviously introduces a gradient and thus a length scale into the 
formulation of entropy. The gradient in the Temkin model is identified as follows: 
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݀௡ =  ௡ିଵ  − ௡ = න ݀݀ݎ(௡ିଵ)௟
௡௟ ݎ݀ = ݀௡݀ݎ න ௟(௡ିଵ)ݎ݀

௡௟ = ݈ ݀௡݀ݎ = ݈௥௡(11) ߔ 

with “l” being the distance between two adjacent layers and the gradient being assumed as constant 
between these two layers. Actually Temkin formulated his entropy using the contrast between 
adjacent layers. An extension of the Temkin model towards a continuous formulation and towards 
three dimensions is proposed in the next section. 

5.2. From Discrete to Continuous 

Temkin’s discrete formula for the entropy of a diffuse interface being described in the previous 
section can be visualized as follows, Figure 6: 

 

Figure 6. The  ୬ିଵ  − ୬  values of the Temkin model visualized as contrast i.e.,  l୰୬Φ (in green). 

The step towards a continuous formulation of Temkin’s entropy being already described 
elsewhere [21] corresponds to assuming an averaged and constant value of the gradient between 
each pair of cells. Variations of the gradient from cell to cell still remain possible. The number of cells 
may be infinite and the discretization length l may become extremely small. Some helpful relations 
read: ݎ(݊) = ଴ݎ + ݈݊ ܽ݊݀ ݀݊ = ݎ݈݀

 (12) 

ܵ = − ෍ (௡ିଵஶ
௡ୀିஶ −௡)݈݊(௡ିଵ− ௡) = − ෍ ൜݈ ݀݀ݎ (݈݊)ൠ ݈݊ஶ

௡ୀିஶ ൜݈ ݀݀ݎ  (݈݊)ൠ (13) 

Making the step from discrete to continuous generates 

− ෍ ൜݈ ݀݀ݎ  (݈݊)ൠ ݈݊ஶ
௡ୀିஶ  ൜݈ ݀݀ݎ (݈݊)ൠ → − න ൜݈ ݀݀ݎ (݈݊) ൠ ݈݊ ൜݈ ݀௡݀ݎ (݈݊) ൠ ݀݊ ஶ

ିஶ  (14) 

Substituting ݈݊ = ݎ − ݊݀ ݀݊ܽ ଴ݎ = ௗ௥௟  ܵ = − න ሼ݈௥(ݎ − ଴)ሽ݈݊ሼ݈௥ݎ ݎ) − ଴)ሽݎ ஶݎ݈݀
ିஶ  (15) 

Making the same steps from 1 dimension to 3 dimensions in Cartesian coordinates means (i) 
extending the radial component product l୰ to the full scalar product lԦሬሬԦ and (ii) normalizing also 
the other integration directions by some discretization length: 

ܵ = − ම(lԦሬሬԦ)ln(lԦሬሬԦ) ௫݈ݔ݀ ௬݈ݕ݀ ௭݈ݖ݀
ஶ

ିஶ  (16) 

Assuming isotropy of the discretization i.e., 
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݈௫ = ݈௬ = ݈௭ = ݈௣ (17) 

eventually leads to 

ܵ = − ම (lԦሬሬԦ)ln(lԦሬሬԦ)݈௣ଷ ஶݖ݀ݕ݀ݔ݀
ିஶ  (18) 

The term 

ݏ = (lԦሬሬԦ)ln(lԦሬሬԦ)݈௣ଷ  (19) 

can be interpreted as an entropy density. 
Switching back to spherical coordinates then yields: ݈݀ݔ௣ ௣݈ݕ݀ ௣݈ݖ݀ = 1݈௣ଷ ݀߆݀߆݊݅ݏݎଶ݀ݎ = ଶ݈௣ଶݎ ௣݈ݎ݀  (20) ߗ݀

ܵ = − ම(lԦሬሬԦ)ln(lԦሬሬԦ)ݎଶ ௣݈ݎ݀ ݀݈௣ଶ  (21) 

Assuming isotropy (i.e., no dependence of Φ on angular coordinates) allows for integration 
over the solid angle dΩ 

S =  − 4݈௣ଶ න(lԦሬሬԦ(r − r଴))ln(lԦሬሬԦ(r − r଴))ݎଶஶ
଴

௣݈ݎ݀  (22) 

Terms with finite—i.e., non zero-values of the ∇Φ yielding contributions to the integral will 
only occur at the interface. Proportionality between the ∇Φ containing terms and the δ-function can 
thus be assumed for very small transition widths η of the phase-field Φ: 1݈௣ ቀlԦሬሬԦ(r − r଴)ቁ ln ቀlԦሬሬԦ(r − r଴)ቁ r)ߜ~ − r଴) (23) 

This proportionality can be formulated as an equation by introducing a hitherto unknown 
constant 1݈௣ ቀlԦሬሬԦ(r − r଴)ቁ ln ቀlԦሬሬԦ(r − r଴)ቁ = ݐ݊ܽݐݏ݊݋ܿ ∗ r)ߜ − r଴) (24) 

This equation will be further discussed in the following chapter. Preliminarily inserting this 
relation into Equation (22) yields 

ܵ =  − 4݈௣ଶ න ݐ݊ܽݐݏ݊݋ܿ ∗ (r − r଴)ݎଶ݀ݎஶ
଴ = ݐ݊ܽݐݏ݊݋ܿ− ∗ 4ݎ଴ଶ݈௣ଶ = ݐ݊ܽݐݏ݊݋ܿ− ∗  ௣ଶ (25)ܣ݈

This brings the formulation a step closer to revealing the same structure as the 
Bekenstein-Hawking entropy. The final step of identifying the factor ¼ is described in the following 
section. 

6. Gradients in Diffuse Interfaces 

The considerations about (ݎ)ߔ in the Temkin model highlighted the importance of gradients 
respectively of contrast for the formulation of the entropy of a diffuse interface. Nothing is by now 
specified about the exact shape of ௗ(௥)ௗ௥  resp. the radial component of the gradient vector in 
spherical coordinates ∇rΦ. 

In a first approximation ∇rΦ, could be a constant denoting the average gradient between 0 and 
η (see the blue dotted line in Figure 7). The calculation of the value of this average gradient in a 
discrete, spatial formulation reads 
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〈〉 = ∑ ݈௣௜ே௜ୀଵ ∑ ݈௣ே௜ୀଵ൘ = 1


 (26) 

with the number N of the intervals discretizing the interface being defined as ܰ = ݈௣ (27) 

This simple approach does however not match the continuity requirements for the gradient at 
the contact points to the bulk regions. It further leads to a statistically improbable, extremely sharp 
distribution of the contrast, see the blue bar in histogram in Figure 7. 

 

 

Figure 7. Possible shapes of the Φ function in the transition region: A constant average gradient 
(blue) leads to an extremely narrow distribution of contrast being centered around lp/η. The green 
shapes lead to high counts for small contrast. The red shape leads to a broad distribution of small and 
high contrast values. An entropy type distribution of contrast xi (N = 10): H(x) = −10xln(x) is indicated 
as the red-line overlay. 

The average contrast being calculated from an entropy type distribution of contrast reads 

〈݈௣〉 = ׬ ൫݈௣)ln(݈௣ ൯௟೛೘ೌೣ௟೛೘೔೙ ݀൫݈௣൯׬ ݀൫݈௣൯௟೛೘ೌೣ௟೛೘೔೙  (28) 

The minimum gradient in the distribution has the value 0 (or may be finite but very small; see 
discussion section) while the maximum gradient is 1/lp. This allows fixing the boundaries of the 
integrals to 0 and 1. 
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〈݈௣〉 = ׬ ൫݈௣)ln(݈௣ ൯ଵ଴ ݀൫݈௣൯׬ ݀൫݈௣൯ଵ଴  (29) 

which with න ݀(݈௣)ଵ
଴ = 1 (30) 

yields 〈݈௣〉 = න ൫݈௣)ln(݈௣ ൯ଵ
଴ ݀൫݈௣൯ (31) 

The integral of xln(x) reads [22] න ݔ݀(ݔ)݈݊ݔ = ଶݔ ൤݈݊2ݔ − 14൨ (32) 

when integrating over the interval [0,1] this integral interestingly yields a value of −¼ : 

න ݔ݀(ݔ)݈݊ݔ = 1 ൤݈݊12 − 14൨ − 0 ൤݈݊02 − 14൨ = − 14ଵ
଴  (33) 

The average gradient resp. the average contrast resulting from averaging the distribution thus reads 〈݈௣〉 = − 14 .݌ݏ݁ݎ  〈〉 = − 14݈௣ = − 14 1݈௣ = − 14௠௔௫ (34) 

Replacing the contrast distribution by its average value i.e., approximating 

ܵ =  − 4݈௣ଶ න ቀlԦሬሬԦ(r − r଴)ቁ ln ቀlԦሬሬԦ(r − r଴)ቁ ଶஶݎ
଴

௣݈ݎ݀ ~ − 4݈௣ଶ න 〈݈௣ሬሬሬԦሬሬԦ(ݎ − 〈(଴ݎ ଶஶݎ
଴

௣݈ݎ݀  (35) 

then yields: 

ܵ ~ − 4݈௣ଶ න 〈݈௣ሬሬሬԦሬሬԦ(ݎ − 〈(଴ݎ ଶஶݎ
଴

௣݈ݎ݀  (36) 

ܵ = 4݈௣ଶ න 14 ଶห௠௔௫ሬሬሬሬሬሬሬሬሬሬԦ(rݎ − r଴)ห݀ݎஶ
଴  (37) 

This eventually leads to: 

ܵ ~ 4݈௣ଶ න 14 ଶ(rݎ − r଴)݀ݎ = 4ݎ଴ଶ4݈௣ଶ
ஶ

଴  (38) 

and thus finally to an expression for the entropy of a geometric sphere SGS revealing the same 
structure as the Bekenstein-Hawking entropy of a black hole: ܵீௌ~  4݈௣ଶ (39)ܣ

  



The 4th International Electronic Conference on Entropy and Its Applications (ECEA 2017), 21 November–1st December 2017; 
Sciforum Electronic Conference Series, Vol. 4, 2017 

10 
 

7. Summary and Discussion 

The structure of the Bekenstein-Hawking formula for the dimensionless entropy of a black hole 
has been derived for the case of a geometric sphere. This derivation is based only on geometric 
considerations. The key ingredient to the approach is a statistical description of the transition region 
in a Heaviside resp. a phase-field function. Based on the Temkin entropy of a diffuse interface 
gradients are introduced in form of scalar products into the formulation of entropy for this purpose. 
This introduces a length scale into entropy and provides a link between the world of entropy type 
models and the world of Laplacian type models, Figure 8. 

Figure 8. Upper left: Incomplete list of models for a statistical/entropic description of entities in 
physics and in information theory. Most of these models reveal a logarithmic term as a common 
ingredient. None of these expression comprises gradients and/or Laplacian operators. Upper right: 
Incomplete list of models for a spatio-temporal description of stationary solutions or for the 
evolution in physics systems. Many of these models have a Laplacian operator as a common 
ingredient. Bottom: Entropy formulations comprising gradients as depicted in the present paper 
provide a bridge between these two model worlds. 

The length being used as the smallest discretization length or as the inverse of the maximum 
gradient between two states reveals similar characteristics as the Planck length 

The minimum gradient—being set to 0 when making the transition from Equation (28) to 
Equation (29)—may actually be a finite positive, but nonzero value being calculated as 1/Rmax with 
Rmax being some characteristic maximum length over which the transition from 1 to 0 occurs. This 
Rmax might be the radius of the sphere or the radius of the universe outside the sphere. Equation (33) 
in this case would contain additional terms leading to minor but perhaps important corrections of 
the factor 1/4: 
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න ݔ݀(ݔ)݈݊ݔ = − 14ଵ
௟೛ோ೘ೌೣ

ቆ1 − ൬ ݈௣ܴ௠௔௫൰ଶቇ − ൬ ݈௣ܴ௠௔௫൰ଶ ݈݊ ݈௣ܴ௠௔௫ (40) 

Such corrections become important (i.e., reach the few % region) if the ratio of lp/Rmax gets close 
to 0.1 and might be subject to further discussions. The major implication of the entropy formulation 
comprising scalar products respectively gradients, however, is its perspective of providing a link 
between entropy type models and Laplacian type model equations as outlined in the final section. 

8. Outlook 

Bridging the gap between statistics/entropy type models and spatio-temporal models of the 
Laplacian world will lead to most interesting physics and new insights—e.g., on entropic 
gravity-may emerge when applying and exploiting the proposed “contrast- concept” in more depth. 

First application of this concept [23] already allowed deriving the Poisson equation of 
gravitation including terms being related to the curvature of space. The formalism further generated 
terms possibly explaining nonlinear extensions known from modified Newtonian dynamics 
approaches. 
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