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Introduction

There are different senses of entropy*:

 Thermodynamic Sense
* |Information Sense

o Statistical Sense
 Disorder Sense

« Homogeneity Sense

Especially the ,disorder and ,homogeneity” senses are related to and
even require the notion/specification/definition of space

Only few formulas for Entropy comprise spatial aspects/entities

*Haglund, J.; Jeppsson, F.; Stromdahl, H.:
“Different Senses of Entropy—Implications for Education.”
Entropy 2010, 12, 490-515. - .



Objective

One example for an entropy formula comprising spatial entities is the
Bekenstein-Hawking entropy Sg, which in its dimensionless form* reads:

Sgy: dimensionless A: area of the event horizon/
Bekenstein-Hawking entropy / surface area of the black hole
BH = 412 L,: Planck length/ a smal

.— posmve number having the

1/4: important factor dimension of a length

In spite of describing a physics object — a black hole - having mass,
charge spin etc. this formula only contains geometric entities

Obijective of the presentation is to derive the structure of this formula
based on geometric considerations.

* Bekenstein, J. D. (2008): Scholarpedia, 3(10):7375. doi:10.4249/scholarpedia.7375




The Heaviside function

The approach starts from the Heaviside function* ®(x,):
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1
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which can be used to describe a sphere or any other geometric object.

The volume V of a sphere with radius r, in spherical coordinates is then
given by:

4
V= ﬂj O(r — ry)r?drdQ = gnrg’

with dQ2 being the differential solid angle: sin®d®de = d 2

A



The & function

The Dirac o function actually is defined* as the distributional
derivative of the Heaviside function ®(x) as

dO(x)
dx

o(x) :=

Using the & function the surface A of the sphere — and also the
surface of more complex geometric objects - can easily be
calculated :

A= ﬂ Sr —ryr?drdQ = 4nr¢

see e.g.: https://en.wikipedia.org/wiki/Heaviside_step_function A



Intermediate summary : the ,A”

This approach thus has allowed to calculate the area ,A* as the
first step towards deriving the entropy of a geometric sphere

In fact, however, nothing has been said by now about entropy.

The next steps will have a closer look at the transition region of the
Heaviside function and introduce the phase-field function



The phase field description of a transition

O(Xx)
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alternative
formulation with
transition between
x=0 and x+n

The Heaviside function varies
discontinuously from 1 to O in an
infinitesimally small transition region.
Nothing is thus known about the shape
of this function in the transition region.

The phase- field variable @ in contrast
varies continuously from 1 to O in the
transition region with finite width n

The shape of the transition in phase-field
models depends on the choice of the
potential. A double-well potential e.qg.
leads to a hyperbolic- tangent profile
while a double obstacle potential leads to
a cosine profile of the ® function

However, nothing is a priori known about

the shape of this function in the transition
region also in phase-field models.

A



Can we learn more about the interface region?

W
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The Phase-field function @ can be considered as a contineous formulation of the
Heaviside function @ if the interface thickness n becomes infinitesimally small.

Is there a rationale for the shape of both the Heaviside and the phase-field
functions in the transition region?

A



Entropy of a single interface layer: the Jackson Model
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liquid
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solid liquid
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solid \
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The Jackson model*:

e Is used to describe facetted
growth of crystals

e assumes ideal mixing of
the two states (solid/liquid)
In a single interface layer
between the bulk states

« describes the entropy of
the interface as:

S=@nd + (1 — ®)in(1 — D)

« which generates ® = 0.5 as the most probable value

*Jackson, K.A. Liquid Metals and Solidification; ASM: Cleveland, OH, USA, 1958

cited in :

Woodruff, D. The Solid Liquid Interface; Cambridge University Press: Cambridge, UK, 1973

A



Describing a diffuse interface: the Kossel Model

The Kossel model*:

e is a discrete model

* is used to describe the growth of
crystals with diffuse interfaces

e assumes attachment of solid on
eXiSting solid Only (no overhang)

» describes a stepwise transition
from 100% solid (the 4 left layers) tO 100%
||C|U|d (from layer 11 to the right)

e provides the basis for Temkin'‘s
discrete formulation of the entropy
of a diffuse interface

*seee.g.:
Woodruff, D. The Solid Liquid Interface; Cambridge University Press: Cambridge, UK, 1973
powered by technology




Entropy of a diffuse interface: the Temkin Model

The Temkin model*:

* is used to describe growth of crystals
with diffuse interfaces

e assumes ideal mixing between two
adjacent states/layers in a multilayer
Interface

» describes the entropy of the diffuse
Interface as:

¢(X)=<1>21\ on
14 (0 @)
12 $(x)
; S=— 2 (@ _ —®)n(D _ — B,)
6 n=—~oo
° T o153} ~nEx * recovers the Jackson model as a limiting

case for a single interface layer

*Temkin, D.E. Crystallization Processes; Sirota, N.N., Gorskii, F.K., Varikash, V.M., Eds.; English
Translation; Consultants Bureau: New York, NY, USA, 1966.
cited in : Woodruff, D. The Solid Liquid Interface; Cambridge University Press: Cambridge, UK, ﬁmered by technology




Highlighting the importance of the Temkin model

i=0 1 2 345 6 7 8 910 =11
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The gradient in the
Temkin model is identified as follows:

(n—1)l

do
do, =D, | — @, = f d

ar T

nl

The Temkin model:

introduces neighborhood relations
between adjacent layers and thus an
,order” resp. ,disorder” sense
introduces a gradient and thus a
length scale into the formulation of
entropy

can be extended to a continuous
formulation

can be extended to 3 dimensions

(n—1)l
do, da,
dr f dr =1 dr
nl

with ,|“ being the distance between two adjacent layers and the gradient being
assumed as constant between these two layers

*Temkin, D.E. Crystallization Processes; Sirota, N.N., Gorskii, F.K., Varikash, V.M., Eds.; English
cited in : Woodruff, D. The Solid Liquid Interface; Cambridge University Press: Cambridge, UK, 1973

Translation; Consultants Bureau: New York, NY, USA, 1966.



From discrete to continuous*®

dr
r(n) =ry+nl and dn = T

(0]

- do dod
S=— z (@ _ —B)I(D_ - @,) = — Z {l; (nl)} n {z; (nl)}

n=—oo n=—oo

Making the transition from discrete to continuous:

& (do do °  d@ do,
—nZOO {IW (nl)}ln {zﬁ (nl)} o= f_ ) {lﬂ(nl)}ln{l — (nl)}dn
. dr
and substituting: nl=r—r, and dn = T
o . * dr
in 1 dimension yields: S =— j {IV,®(r — 1) }n{lV,® (r — rO)}T

see also:Schmitz, G.J. Thermodynamics of diffuse interfaces. In Interface and Transport
Dynamics; Emmerich, H., Nestler, B., Schreckenberg, M., Eds.; Springer Lecture Notes in
Computational Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2003; pp.

47-64



Extending to 3D

extending the formulation to 3 dimensions in cartesian coordinates reads:

--| ﬁ (Vo)n(ive) T2

x by 1z

Assuming isotropy of space resp. of the discretization i.e. I, =1, =1, = [,

eventually leads to
j J J (1V<1>)1H(1V¢) xdydz

_ (Ve)In(iVe)
-

The term

can be interpreted as an entropy density.



Extending to 3D in spherical coordinates

- _ j E (¥ 4)In(i¥¢) Ullx ‘fyy sz

Switching to spherical coordinates yields:

dxdydz _ —3r2dr5m®d®d(p = r—ﬂdﬂ
p by L 13

rdQ

s = - || VoenmdTomr —pl—z

p

Assuming isotropy (i.e. no dependence on angular coordinates) allows for integration over the
solid angle dQ:

co

(AVo(r = ro)In(AVO(r — ro))r? ?

b p

A



Intermediate summary: the ,Ip2“ term

The integral

(0.0]

. NN dr
(IV(r — ro)In(IVe(r — ro))r? N
p p
0
will only deliver contributions at the interface r = r, as only at interfaces there is a finite gradient.
The integrand can thus be considered being proportional to the ¢ function:

1 - =
- (IV(I)(r — T'o)) In (lVd)(r - ro)) = constant * 5(r — 1)
p

41

o
, 4rrg A
= ——- | constant * 8(r — ry)r“dr = —constant *
0

1129 = —constant x l_z

ly

The entropy of a geometric sphere S5 thus gets closer to the formulation known
for the Bekenstein-Hawking entropy Sg, of a black hole:

A A
Scs = —constant * 2 = 2
P P

A



How to get further?

Can we learn more about the shape of the transition ?

Can we learn more from exploiting the term:

’ %(Wq)(r — ro)) In (TV—Cﬁ(F - 1‘0))

Is there a way to explain the factor ¥?

Statistics of ,contrast® might help
with ,, contrast” being defined as....

>—

contrast :=1Vd

A



From average gradients to distribution of gradients (resp. contrast)

A | Possible shapes of the @ function in
5 the transition region:

A constant average gradient (blue)
leads to an extremely narrow
distribution of contrast being
centered around |/m

r  The green shapes lead to high
counts for small contrast

The red shape leads to a broader
distribution of small and high
contrast values

HI1, V@)

An entropy type distribution of
contrast x; (i=10) :
H(x)= -10*x*In(X)

Is indicated as the red-line overlay

A




Averaging the distribution of contrast

The average of the contrast distribution can be calculated as follows
L, VO ..
p max T
flp vor (L VO, Vo) d(l, Vo)

lp V®@max
flppV@min d(lp V@)

(L, V&) =

The minimum contrast in the distribution has the value 0 while the maximum contrast is 1 with
the maximum gradient then being1/l,. This allows to fix the boundaries of the integral to O resp.

1. For these boundaries the integral in the denominator yields a value of 1. The remaining
integral

1
(L, V) = j (1, Vo)lniid, v ) d(L, VD)
0
according to a standard formula* interestingly yields

1

f In () dx = 1[lnl 1] O[lno 1] _ 1
rexoax = 2 2 "
0

* See : llja N. Bronstein, Heiner Muhlig, Gerhard Musiol, Konstantin A. Semendjajew:
Taschenbuch der Mathematik (Bronstein): Edition Harry Deutsch (2016) -



Intermediate summary : the ,1/4"

Replacing the contrast distribution in the integral

41 r R R
S = __2_] (AIVd(r — ro))In(IVH(r — ry))r?
lp )

by its average

(L, VD) = L (VD) = L _ 11
p VENT Ty TE Y
leads to
4z (1 o
:_Zﬂ-f _rzlvmaxd)(r_rO)ldr
lp 4
0
and thus eventually to
47 (1 amr2 A
~ — _ 2 — = 0 =
I%J4r o(r — ry)dr 4l§ 412%

0



Summary

The structure of the Bekenstein- Hawking formula for the dimensionless entropy of a black hole
has been derived for a geometric sphere

The derivation is based only on geometric considerations

Key ingredient to the approach is a statistical description of the transition region in a Heaviside
resp. phase-field function.

Based on the Temkin entropy of a diffuse interface gradients are introduced in form of scalar
products into the formulation of entropy for this purpose.

This introduces a length scale into entropy and provides a link between the world of entropy
type models and the world of Laplacian type models (see following slides)

Most interesting physics and new insights — e.g. on entropic gravity - may emerge when
applying and exploiting the ,contrast- concept” in more depth (see final slide).

,2contrast* may also be considered as the contrast between two quantummechanical states

A



Entropy type equations

S=kglnW Boltzmann entropy
S=—ks Y pilnp; Gibbs-Boltzmann entropy

H=—p-log,p— (1—p)-log,(1—p)
X Shannon entropy (binary)
H(X) = =} _p(z:)logp(2:): ghannon entropy

i1
(general)

S=—kpgTr(plog(p)). von Neumann entropy

i=1

Ho(X) = 5 i —log (ZP?) Rényi entropy

k
Sy(pi) = -1 (1 Epf) Tsallis entropy

i

Incomplete list of models for a
statistical/entropic description
of entities in physics and in
information theory

Most of these models have a
logarithmic term as a common
ingredient.

None of these expression comprises
gradients and/or Laplacian operators



Laplacian type equations

—Au=f Poisson Equation

Ad(r) = _# Coulomb Equation

A®(r) =4r- G- p(r) Newton Equation

ind w(r, 1) [_ﬁz V24 V(r 1]] ¥ (r, 1)
9t H - 2“ H '
Schrddinger Equation
a¢'{r1 t} 2
5~ PV ¢(r.t) Diffusion Equation
82
L= 252 A Wave Equation (operator)
- .
ac’,¢ = 'V — f'(¢) — - H'($)u +ii(r,1)
1
Phase-field Equation
dc

— = DV?(c* —c— V3¢
ot ( V") Cahn-Hiliard Equation

Incomplete list of models for a
spatio-temporal description
of stationary solutions or for the
evolution in physics systems

Many of these models have a

Laplacian operator as a common
ingredient.

A



Combining statistical and spatially resolved models

il

Bridging the gap between
statistics/entropy type models and
spatio-temporal models of the Laplacian world

Q
powered by technology //. =~ H E E E S S




Benefits

First application of this concept:

Entropy 2017, 19(4), 151; doi:10.3390/e19040151

A Combined Entropy/Phase-Field Approach to Gravity

Georg J. Schmitz B2

MICRESS group, ACCESS e V., Intzestr5, D-52072 Aachen, Germany

Academic Editor: Remo Garattini
Received: 9 March 2017 / Revised: 28 March 2017 / Accepted: 29 March 2017 / Published: 31 March 2017

(This article belongs to the Section Astrophysics and Cosmology)
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resulted in :

 Poisson equation/Newtons law

 terms related to curvature of space,

o terms possibly explaining modified Newtonian dynamics
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