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Introduction 

There are different senses of entropy*: 
 
• Thermodynamic Sense 
• Information Sense 
• Statistical Sense 
• Disorder Sense 
• Homogeneity Sense 
 

*Haglund, J.; Jeppsson, F.; Strömdahl, H.:  
“Different Senses of Entropy—Implications for Education.”  
Entropy 2010, 12, 490-515. 

Especially  the „disorder“ and  „homogeneity“ senses are related to and 
even require the notion/specification/definition of space 

Only few formulas for Entropy comprise spatial aspects/entities  
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Objective 

  

𝑆𝐵𝐵 =
𝐴
4𝐿𝑝2

 

  
 

One example for an entropy formula comprising spatial entities is the 
Bekenstein-Hawking entropy SBH which in its dimensionless form* reads: 

Objective of the presentation is to derive the structure of this formula 
based on geometric considerations.  

A: area of the event horizon/ 
surface area of the black hole 

Lp: Planck length/  a small 
positive number having the 
dimension of a length 1/4: important factor 

SBH: dimensionless  
Bekenstein-Hawking entropy 

In spite of describing a physics object – a black hole - having mass, 
charge spin etc. this formula only contains geometric entities 

* Bekenstein, J. D. (2008):  Scholarpedia, 3(10):7375. doi:10.4249/scholarpedia.7375 
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The Heaviside function 

The approach starts from the Heaviside function* Θ(x0): 

which can be used to describe a sphere or any other geometric object.   
  
The volume V of a sphere with radius r0 in spherical coordinates is then 
given by: 

𝑉 = �Θ 𝑟 − 𝑟0 𝑟2𝑑𝑟𝑑Ω = 
4
3
π 𝑟03 

with dΩ being the differential solid angle: 𝑠𝑠𝑠Θ𝑑Θ𝑑ϕ = 𝑑Ω 
  

1 

0 
x0 

Θ(x) 

x 
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The δ function 

The Dirac δ function actually is defined* as the distributional 
derivative of the Heaviside function Θ(x) as  
 

δ 𝑥 ∶=
𝑑Θ(𝑥)
𝑑𝑥

 
 
Using the δ function the surface A of the sphere – and also the 
surface of more complex geometric objects - can easily be 
calculated : 
 
 
  𝐴 = � δ(𝑟 − 𝑟0)𝑟2𝑑𝑟𝑑Ω  = 4π 𝑟0

2 

see e.g.: https://en.wikipedia.org/wiki/Heaviside_step_function 
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Intermediate summary : the  „A“ 

This approach thus has allowed to calculate the area „A“ as the 
first step towards deriving the entropy of a geometric sphere 
 
 
    

𝑆𝐺𝐺 =
𝐴

4𝑙𝑝2
 

  
 

In fact, however, nothing has been said by now about entropy. 
 
The next steps will have a closer look at the transition region of the 
Heaviside function and introduce the phase-field function 
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The phase field description of a transition 

1 
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0 
x0 

Φ(x) 

x 

The Heaviside function varies 
discontinuously from 1 to 0 in an 
infinitesimally small transition region. 
Nothing is thus known about the shape 
of this function in the transition region. 
 
The phase- field variable Φ  in contrast 
varies continuously from 1 to 0 in the 
transition region with finite width η 
 
 
The shape of the transition in phase-field 
models depends on the choice of the 
potential. A double-well potential e.g. 
leads to a hyperbolic- tangent profile 
while a double obstacle potential leads to 
a cosine profile of the Φ function 
 
However, nothing is a priori known about 
the shape of this function in the transition 
region also in phase-field models. 
 

x0-η/2 x0+η/2 

1 

0 

Φ(x) 

x x0 x0+η 

alternative 
formulation with 
transition between 
x=0 and x+η 
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Can we learn more about the interface region? 

The Phase-field function Φ can be considered as a contineous formulation of the 
Heaviside function Θ if the interface thickness η becomes infinitesimally small. 
 
Is there a rationale for the shape of both the Heaviside and the phase-field 
functions in the transition region? 
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 Entropy of a single interface layer:  the Jackson Model 

The Jackson model*: 
 
• is used to describe facetted 

growth of crystals 
• assumes ideal mixing of 

the two states (solid/liquid) 
in a single interface layer 
between the bulk states 

• describes the entropy of 
the interface as: 

𝑆 = Φ𝑙𝑠Φ + (1 −Φ)𝑙𝑠(1 −Φ)  

• which generates Φ = 0.5 as the most probable value 

*Jackson, K.A. Liquid Metals and Solidification; ASM: Cleveland, OH, USA, 1958  
cited in : 
Woodruff, D. The Solid Liquid Interface; Cambridge University Press: Cambridge, UK, 1973 
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 Describing a diffuse interface:  the Kossel Model 

The Kossel model*: 
 
• is a discrete model 
• is used to describe the growth of 

crystals with diffuse interfaces 
• assumes attachment of solid on 

existing solid only (no overhang)  

• describes a stepwise transition 
from 100% solid (the 4 left layers) to 100% 
liquid (from layer 11 to the right) 

• provides the basis for Temkin‘s 
discrete formulation of the entropy 
of a diffuse interface 

*see e.g. : 
Woodruff, D. The Solid Liquid Interface; Cambridge University Press: Cambridge, UK, 1973 
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 Entropy of a diffuse interface:  the Temkin Model 

𝑆 = − � (Φ𝑠−1

∞

𝑠=−∞

−Φ𝑠)𝑙𝑠(Φ𝑠−1− Φ𝑠) 

The Temkin model*: 
 
• is used to describe growth of crystals 

with diffuse interfaces 
• assumes ideal mixing between two 

adjacent states/layers in a multilayer 
interface  

• describes the entropy of the diffuse 
interface as: 

• recovers the Jackson model as a limiting 
case for a single interface layer 

*Temkin, D.E. Crystallization Processes; Sirota, N.N., Gorskii, F.K., Varikash, V.M., Eds.; English 
Translation; Consultants Bureau: New York, NY, USA, 1966. 
cited in : Woodruff, D. The Solid Liquid Interface; Cambridge University Press: Cambridge, UK, 1973 
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Highlighting the importance of the Temkin model 

The Temkin model: 
 
• introduces neighborhood relations 

between adjacent layers and thus an 
„order“ resp. „disorder“ sense 

• introduces a gradient and thus a 
length scale into the formulation of 
entropy 

• can be extended to a continuous 
formulation 

• can be extended to 3 dimensions 
The gradient in the 
Temkin model is identified as follows: 

𝑑Φ𝑠 = Φ 𝑠−1 −Φ𝑠  = �
𝑑Φ
𝑑𝑟

(𝑠−1)𝑙

𝑠𝑙

𝑑𝑟 =  
𝑑Φ𝑠

𝑑𝑟
� 𝑑𝑟

(𝑠−1)𝑙

𝑠𝑙

= 𝑙
𝑑Φ𝑠

𝑑𝑟
 

with „l“ being the distance between two adjacent layers and the gradient being 
assumed as constant between these two layers 

*Temkin, D.E. Crystallization Processes; Sirota, N.N., Gorskii, F.K., Varikash, V.M., Eds.; English 
Translation; Consultants Bureau: New York, NY, USA, 1966. 
cited in : Woodruff, D. The Solid Liquid Interface; Cambridge University Press: Cambridge, UK, 1973 
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 From discrete to continuous* 

Making the transition from discrete to continuous: 

and substituting: 

in 1 dimension yields: 

see also:Schmitz, G.J. Thermodynamics of diffuse interfaces. In Interface and Transport 
Dynamics; Emmerich, H., Nestler, B., Schreckenberg, M., Eds.; Springer Lecture Notes in 
Computational Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2003; pp. 
47–64  
   

𝑆 = −� 𝑙∇𝑟Φ(𝑟 − 𝑟0) 𝑙𝑠 𝑙∇𝑟Φ (𝑟 − 𝑟0)
𝑑𝑟
𝑙

 
∞

−∞
 

− � �𝑙
𝑑Φ
𝑑𝑟

 (𝑠𝑙)� 𝑙𝑠
∞

𝑠=−∞

 �𝑙
𝑑Φ
𝑑𝑟

 (𝑠𝑙)� → −� �𝑙
𝑑Φ
𝑑𝑟

(𝑠𝑙) � 𝑙𝑠 �𝑙
𝑑Φ𝑠

𝑑𝑟
(𝑠𝑙) � 𝑑𝑠 

∞

−∞
 

𝑠𝑙 = 𝑟 − 𝑟0    𝑎𝑠𝑑   𝑑𝑠 =
𝑑𝑟
𝑙

 

𝑟 𝑠 = 𝑟0 + 𝑠𝑙     𝑎𝑠𝑑   𝑑𝑠 =
𝑑𝑟
𝑙

 

𝑆 = − � (Φ𝑠−1

∞

𝑠=−∞

−Φ𝑠)𝑙𝑠(Φ𝑠−1− Φ𝑠) = − � �𝑙
𝑑Φ

𝑑𝑟
 (𝑠𝑙)� 𝑙𝑠

∞

𝑠=−∞

 �𝑙
𝑑Φ

𝑑𝑟
 (𝑠𝑙)� 
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Extending to 3D 

𝑆 = −�(l⃗∇φ)ln(l⃗∇φ)
𝑑𝑥
𝑙𝑥
𝑑𝑑
𝑙𝑦
𝑑𝑑
𝑙𝑧

∞

−∞

 

extending the formulation to 3 dimensions in cartesian coordinates reads: 

 
Assuming isotropy of space resp. of the discretization i.e.  𝑙𝑥 = 𝑙𝑦 = 𝑙𝑧 = 𝑙𝑝 
eventually leads to 

𝑆 = −�
(l⃗∇φ)ln(l⃗∇φ)

𝑙𝑝3
𝑑𝑥𝑑𝑑𝑑𝑑

∞

−∞

 

  
The term 

𝑠 =
(l⃗∇φ)ln(l⃗∇φ)

𝑙𝑝3
 

can be interpreted as an entropy density. 
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Extending to 3D in spherical coordinates 

𝑆 = −�(l⃗∇φ)ln(l⃗∇φ)
𝑑𝑥
𝑙𝑥
𝑑𝑑
𝑙𝑦
𝑑𝑑
𝑙𝑧

∞

−∞

 

Switching to spherical coordinates yields: 
 
  
 

𝑆 =  −�(l⃗∇φ(r))ln(l⃗∇φ(r))𝑟2
𝑑𝑟
𝑙𝑝
𝑑Ω
𝑙𝑝2

 

𝑑𝑥
𝑙𝑝

𝑑𝑦
𝑙𝑝

𝑑𝑧
𝑙𝑝

= 1
𝑙𝑝3
𝑟2𝑑𝑟𝑠𝑠𝑠Θ𝑑Θ𝑑ϕ = 𝑟

2

𝑙𝑝2
𝑑𝑟
𝑙𝑝
𝑑Ω 

Assuming isotropy (i.e. no dependence on angular coordinates) allows for integration over the 
solid angle dΩ: 
 

𝑆 =  −
4π
𝑙𝑝2
�(l⃗∇φ(r − r0))ln(l⃗∇φ(r − r0))𝑟2
∞

0

𝑑𝑟
𝑙𝑝

 



powered by technology 

Intermediate summary:  the „lp2“ term 

𝑆 =  −
4π
𝑙𝑝2
�(l⃗∇φ(r − r0))ln(l⃗∇φ(r − r0))𝑟2
∞

0

𝑑𝑟
𝑙𝑝

 

The integral 

will only deliver contributions at the interface r = r0 as only at interfaces there is a finite gradient.  
The integrand  can thus be considered being proportional to the δ function: 

  

𝑆𝐺𝐺 = −𝑐𝑐𝑠𝑠𝑐𝑎𝑠𝑐 ∗
𝐴
𝑙𝑝2

=
𝐴

4𝑙𝑝2
 

  
 

The entropy of a geometric sphere SGS  thus gets closer to the formulation known  
for the Bekenstein-Hawking entropy SBH of a black hole: 
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How to get further? 

Can we learn more about the shape of the transition ? 
 
Can we learn more from exploiting  the term: 
 
 
 
? 
 
Is there a way to explain the factor ¼? 
 
Statistics of „contrast“ might help  
with „contrast“ being defined as….  

1
𝑙𝑝

l⃗∇Φ r − r0 ln l⃗∇Φ r − r0  

𝑐𝑐𝑠𝑐𝑟𝑎𝑠𝑐 ∶= l⃗∇Φ 
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From average gradients to distribution of gradients (resp. contrast) 

Possible shapes of the Φ function in 
the transition region: 
 
A constant average gradient (blue) 
leads to an extremely narrow 
distribution of contrast being 
centered around lp/η 
 
The green shapes lead to high 
counts for small contrast  
 
The red shape leads to a broader 
distribution of small and high  
contrast values 
 
An entropy type distribution of 
contrast xi (i=10) : 

H(x)= -10*x*ln(x) 
 
is indicated as the red-line overlay 
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Averaging the distribution of contrast 

  

�𝑥𝑙𝑠(𝑥)𝑑𝑥 =  1 �
𝑙𝑠1
2
−

1
4
� − 0 �

𝑙𝑠0
2
−

1
4
� = −

1
4

1

0

 

The average of the contrast distribution can be calculated as follows 

The minimum contrast in the distribution has the value 0 while the maximum contrast is 1 with 
the maximum gradient then being1/lp. This allows to fix the boundaries of the integral to 0 resp. 
1. For these boundaries the integral in the denominator yields a value of 1. The remaining 
integral  

according to a standard formula* interestingly yields 

* See : Ilja N. Bronstein, Heiner Mühlig, Gerhard Musiol, Konstantin A. Semendjajew:  
Taschenbuch der Mathematik (Bronstein): Edition Harry Deutsch (2016) 

〈𝑙𝑝𝑝∇Φ〉 =
∫ �𝑙𝑝𝑝∇Φ)ln⁡(𝑙𝑝𝑝∇Φ �𝑙𝑝𝑝∇Φ𝑚𝑚𝑎𝑥
𝑙𝑝𝑝∇Φ𝑚𝑚𝑠𝑠

𝑑�𝑙𝑝𝑝∇Φ�

∫ 𝑑�𝑙𝑝𝑝∇Φ�
𝑙𝑝𝑝∇Φ𝑚𝑚𝑎𝑥
𝑙𝑝𝑝∇Φ𝑚𝑚𝑠𝑠

 

〈𝑙𝑝𝑝∇Φ〉 = � �𝑙𝑝𝑝∇Φ)ln⁡(𝑙𝑝𝑝∇Φ �
1

0
𝑑�𝑙𝑝𝑝∇Φ� 
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Intermediate summary : the „1/4“ 

𝑆 =  −
4π
𝑙𝑝2
�(l⃗∇φ(r − r0))ln(l⃗∇φ(r − r0))𝑟2
∞

0

𝑑𝑟
𝑙𝑝

 

Replacing the contrast distribution in the integral 

by its average 

〈𝑙𝑝𝑝∇Φ〉 = −
1
4

  𝑟𝑟𝑟𝑠𝑝𝑝.    〈∇Φ〉 = −
1

4𝑙𝑝𝑝
=  −

1
4

1
𝑙𝑝𝑝

= −
1
4
∇Φ𝑚𝑚𝑎𝑥  

leads to 

𝑆 =
4π
𝑙𝑝𝑝2
�

1
4
𝑟2�∇𝑚𝑚𝑎𝑥����������⃗ φ(r − r0)�𝑑𝑟

∞

0

 

𝑆 ~ 
4π
𝑙𝑝𝑝2
�

1
4
𝑟2δ(r − r0)𝑑𝑟 =

4π𝑟0
2

4𝑙𝑝𝑝2

∞

0

=
𝐴

4𝑙𝑝𝑝2
 

and thus eventually to 
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Summary 

The structure of the Bekenstein- Hawking formula for the dimensionless entropy of a black hole 
has been derived for a geometric sphere  
 
The derivation is based only on geometric considerations 
 
Key ingredient to the approach is a statistical description of the transition region in a Heaviside 
resp. phase-field function. 
 
Based on the Temkin entropy of a diffuse interface gradients are introduced in form of scalar 
products into the formulation of entropy for this purpose. 
 
This introduces a length scale into entropy and provides a link between the world of entropy 
type models and the world of Laplacian type models (see following slides) 
 
Most interesting physics and new insights – e.g. on  entropic gravity -  may emerge when 
applying and exploiting  the  „contrast- concept“ in more depth (see final slide). 
 
„Contrast“ may also be considered as the contrast between two quantummechanical states 
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Entropy type equations 

Boltzmann entropy 

Gibbs-Boltzmann entropy 

Shannon entropy (binary) 

Incomplete list of models for a  
statistical/entropic description  
of entities in physics and in 
information theory 
 
Most of these models have a 
logarithmic term as a common 
ingredient.  
 
None of these expression comprises 
gradients and/or Laplacian operators 

von Neumann entropy 

Shannon entropy  
(general) 

Rényi entropy 

Tsallis entropy 
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Laplacian type equations 

Poisson Equation 

Coulomb Equation 

Newton Equation 

Schrödinger Equation 

Wave Equation (operator) 

Phase-field Equation 

Diffusion Equation 

Cahn-Hilliard Equation 

Incomplete list of models for a  
spatio-temporal description  
of stationary solutions or for the 
evolution in physics systems 
 
Many of these models have a 
Laplacian operator as a common 
ingredient. 
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Combining statistical and spatially resolved models 

 
 
 
Laplacian  

World 
 
 
 

 
 
 
Entropic  

World 
 

 
 

Lagrange 
formalism 

entropy type terms 
comprising gradients 

Bridging the gap between  
statistics/entropy type models and  

spatio-temporal models of the Laplacian world 
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Benefits 

First  application of this concept: 

resulted in : 
• Poisson equation/Newtons law   
• terms related to curvature of space,  
• terms possibly explaining modified Newtonian dynamics 
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