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Abstract: A mapping of non-extensive statistical mechanics with non-additivity parameter q 6= 1
into Gibbs’ statistical mechanics exists (E. Vives, A. Planes, PRL 88 2, 020601 (2002)) which allows
generalization to q 6= 1 both of Einstein’s formula for fluctuations and of the ’general evolution criterion’
(P. Glansdorff, I. Prigogine, Physica 30 351 (1964)), an inequality involving the time derivatives of
thermodynamical quantities. Unified thermodynamic description of relaxation to stable states with
either Boltzmann (q = 1) or power-law (q 6= 1) distribution of probabilities of microstates follows. If a 1D
(possibly nonlinear) Fokker-Planck equation describes relaxation, then generalized Einstein’s formula
predicts whether the relaxed state exhibits a Boltzmann or a power law distribution function. If this
Fokker-Planck equation is associated to the stochastic differential equation obtained in the continuous
limit from a 1D, autonomous, discrete, noise-affected map, then we may ascertain if a a relaxed state
follows a power-law statistics—and with which exponent—by looking at both map dynamics and noise
level, without assumptions concerning the (additive or multiplicative) nature of the noise and without
numerical computation of the orbits. Results agree with the simulations (J. R. Sánchez, R. Lopez-Ruiz,
EPJ 143.1 (2007): 241–243) of relaxation leading to a Pareto-like distribution function.
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1. The Problem

Usefulness of familiar, Gibbs’ thermodynamics lies in its ability to provide predictions concerning
systems at thermodynamical equilibrium with the help of no detailed knowledge of the dynamics of
the system. The distribution of probabilities of the microstates in canonical systems described by Gibbs’
thermodynamics is proportional to a Boltzmann exponential.

No similar generality exists for those systems in steady, stable (‘relaxed’) state which interact with
external world, which are kept far from thermodynamical equilibrium by suitable boundary conditions
and where the probability distribution follows a power law. (Here we limit ourselves to systems where
only Boltzmann-like or power-law-like distributions are allowed). Correspondingly, there is no way to
ascertain whether the probability distribution in a relaxed state is Boltzmann-like or power-law-like, but
via solution of the detailed equations which rule the dynamics of the particular system of interest. In other
words, if we dub ‘stable distribution function’ distribution of probabilities of the microstates in a relaxed
state, then no criterion exists for assessing the stability of a given probability distribution—Boltzmann-like
or power-law-like—against perturbations.

Admittedly, a theory exists—the so-called ‘non-extensive statistical mechanics’ [1,2,5,6,12,18]—which
extends the formal machinery of Gibbs’ thermodynamics to systems where the probability distribution
is power-law-like. Non-extensive statistical mechanics is unambiguously defined, once the value of a
dimensionless parameter q is known; among other things, this value describes the slope of the probability
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distribution. If q 6= 1 then the quantity corresponding to the familiar Gibbs’ entropy is not additive;
Gibbs’ thermodynamics and Boltzmann’s distribution are retrieved in the limit q → 1. Thus, if we
know the value of q then we know if the distribution function of a stable, steady state of a system which
interacts with external world is Boltzmann or power law, and, in the latter case, what its slope is like.
Unfortunately, the problem is only shifted: in spite of the formal exactness of non-extensive statistical
mechanics, there is no general criterion for estimating q—with the exception, again, of the solution of the
equations of the dynamics.

The aim of the present work is to find such criterion, for a wide class of physical sytems at least.
To this purpose, we recall that—in the framework of Gibbs’ thermodynamics—the assumption

of ‘local thermodynamical equilibrium’ (LTE) is made in many systems far from thermodynamical
equilibrium, i.e., it is assumed that thermodynamical quantities like pressure, temperature etc. are
defined withn a small mass element of the system and that these quantities are connected to each other
by the same rules—like e.g., Gibbs-Duhem equation—which hold at true thermodynamical equilibrium.
If, furthermore, LTE holds at all times during the evolution of the small mass element, then the latter
satisfies the so-called ‘general evolution criterion’ (GEC), an inequality involving total time derivatives of
thermodynamical quantities [9]. Finally, if GEC holds for arbitrary small mass element of the system,
then the evolution of the system as a whole is constrained; if such evolution leads a system to a final,
relaxed state, then GEC puts a constraint on relaxation.

Straightforward generalization of these results to the non-extensive case q 6= 1 is impossible. In this
case, indeed, the very idea of LTE is scarcely useful: the q 6= 1 entropy being a non-additive quantity, the
entropy of the system is not the sum of the entropies of the small mass elements the system is made of,
and no constraint on the relaxation of the system as a whole may be extracted from the thermodynamics
of its small mass elements of the system. (For mathematical simplicity, we assume q to be uniform across
the system).

All the same, an additive quantity exists which is monotonically increasing with the entropy (and
achieves therefore a maximum if and only if the q 6= 1 entropy is maximum) and which reduces to Gibbs’
entropy as q→ 1. Thus, the q 6= 1 case may be unambiguously mapped onto the corresponding Gibbs’
problem [3], and all the results above still apply. As a consequence, a common criterion of stability exists
for relaxed states for both q = 1 and q 6= 1. The class of perturbations which the relaxed states satisfying
such criterion may be stable against include perturbations of q.

We review some relevant results of non-extensive thermodynamics in Section 2 . The role of GEC and
its consequences in Gibbs’ thermodynamics is discussed in Section 3 . Section 4 discusses generalization
of the results of Section 3 to the q 6= 1 case. Section 5 shows application to a simple toy model. We apply
the results of Section 5 to a class of physical problems in Section 6 . Conclusions are drawn in Section 7.
Entropies are normalized to Boltzmann’s constant kB.

2. Power-Law vs. Exponential Distributions of Probability

For any probability distribution {pk} defined on a set of k = 1, . . . , W microstates of a physical
system, the following quantity [1]

Sq = −∑
k
(pk)

q lnq pk (1)

is defined, where lnq x ≡ x1−q−1
1−q is the inverse function of expq (x) ≡ [1 + (1− q) x]

1
1−q and q > 0.

For an isolated (microcanonical) system, constrained maximization of Sq leads to pk =
1

W for all k’s
and to Sq = lnq (W), the constraint being given by the normalization condition ∑k pk = 1.

For non-isolated systems [2,3], some (i = 1, . . . , M) quantities—e.g., energy, number of particles
etc.—whose values xik label the k-th microstate and which are additive constants of motion in an isolated
system become fixed only on average (the additivity of a quantity signifies that, when the amount of
matter is changed by a given factor, the quantity is changed by the same factor [4]). Maximization of
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Sq with the normalization condition ∑k pk = 1 and the further M constraints Xi ≡ xikP(q)k = const.

(each with Lagrange multiplier Yi and P(q)k ≡
(pk)

q

∑k(pk)
q ; repeated indices are summed here and below)

leads to Sq = lnq
(
Zq
)
, Zq = ∑k expq (−YiFik), Fik ≡

xi(k)−Xi
∑k(pk)

q and to the following, power-law-like
probability distribution:

pk =
expq (−YiFik)

Zq
(2)

Remarkably, Equation (53) of [2] and Equation (6) of [5] show that suitable rescaling of the Yi’s
allows us to get rid of the denominator ∑k (pk)

q in the Fik’s and to make all computations explicit—in the
case M = 1 at least. Finally, if we apply a quasi-static transformation to a Sq = max state then:

dSq = YidXi (3)

If q→ 1 then Equations (1) and (2) lead to Gibbs’ entropy Sq=1 = −∑k pk ln pk and to Boltzmann’s,
exponential probability distribution respectively.

Many results of Gibbs’ thermodynamics still hold if q 6= 1. For example, a Helmholtz’ free energy Fq

still links Sq and Zq the usual way [2,6]. Moreover, if two physical systems A′ and A′′ are independent
(in the sense that the probabilities of A′ + A′′ factorize into those of A′ and of A′′) then we may still write
for the averaged values of the additive quantities [2]

Xi
(

A′ + A′′
)
= Xi

(
A′
)
+ Xi

(
A′′
)

(4)

Generally speaking, however, Equation (4) does not apply to Sq, which satisfies:

Sq
(

A′ + A′′
)
= Sq

(
A′
)
+ Sq

(
A′′
)
+ (1− q) Sq

(
A′
)

Sq
(

A′′
)

(5)

3. q = 1

Equations 4 and (5) are relevant when it comes to discuss stability of the system A′ + A′′ against
perturbations localized inside an arbitrary, small subsystem A′. (It makes still sense to investigate the
interaction of A′ and A′′ while dubbing them as ‘independent’, as far as the internal energies of A′ and
A′′ are large compared with their interaction energy [4]). Firstly, we recollect some results concerning the
well-known case q = 1; then, we investigate the q 6= 1 problem.

To start with, we assume that M = 2; generalization to M 6= 2 follows. We are free to choose
x1k and x2k to be the energy and the volume of the system in the k-th microstate respectively. Then

Y1 =
∂Sq
∂X1

= β ∑k (pk)
q and Y2 =

∂Sq
∂X2

= βp ∑k (pk)
q [6] with β ≡ 1

kBT and where T = k−1
B

(
∂Sq=1

∂U

)−1

V
,

p = −
(

∂Fq=1
∂V

)
T

, U ≡ limq→1 X1 and V ≡ limq→1 X2 are the familiar absolute temperature, pressure,

internal energy and volume respectively. In the limit q → 1 we have ∑k (pk)
q = 1 + (1− q)Sq → 1,

X1, the familiar thermodynamical relationships
(

∂Sq=1
∂U

)
V
= β and

(
∂Sq=1

∂V

)
T
= βp are retrieved, and

Equation (3) is just a simple form of the first principle of thermodynamics.
Since q = 1, Equation (5) ensures additivity of Gibbs’ entropy. We assume A′ to be is at

thermodynamical equilibrium with itself, i.e., to maximize Sq=1 (A′) (LTE). We allow A′ to be also
at equilibrium with the rest A′′ of the system A′ + A′′, until some small, external perturbation occurs
and destroys such equilibrium. The first principle of thermodynamics and the additivity of Sq=1 lead to

Le Chatelier’s principle [4]. In turn, such principle leads to 2 inequalities,
(

∂S
∂T

)
V
> 0 and

(
∂p
∂V

)
T
< 0.

States in which such inequalities are not satisfied are unstable.
Let us introduce the volume dV, the mass density ρ and the mass ρdV of A′. (Just like ρ, here and in

the following we refer to the value of the generic physical quantity a at the center of mass of A′ as to ‘the
value of a in A′’; this makes sense, provided that A′ is small enough). Together with the additivity of
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Gibbs’ entropy, arbitrariness in the choice of A′ ensures that Sq (A′ + A′′) =
∫

dVρs where Sq (A′ + A′′)
and s are Gibbs’ entropy of the whole system A′ + A′′ and Gibbs’ entropy per unit mass respectively;
here and in the following, integrals are extended to the whole system A′ + A′′. The internal energy per
unit mass u and the volume per unit mass (= 1

ρ ) may similarly be introduced, as well as the all the

quantities per unit mass corresponding to all the Xi’s which satisfy Equation (4). Inequalities
(

∂S
∂T

)
V
> 0

and
(

∂p
∂V

)
T
< 0 lead to

(
∂s
∂T

)
V
> 0 and

(
∂p
∂ρ

)
T
> 0 respectively.

We relax the assumption M = 2. If A′ contains particles of h = 1, . . . , N chemical species, each with
Nh particles with mass mh and chemical potential µh, then N degrees of freedom add to the 2 degrees
of freedom U and V, i.e., M = N + 2. In the k-th microstate, xh+2,k is the number of particles of the h-th
species. In analogy with U and V, we write Nh = limq→1 Xh+2. Starting from this M additive quantities,
different M-ples of coordinates (thermodynamical potentials) may be selected with the help of Legendre
transforms. LTE implies minimization of Gibbs’ free energy Fq=1 + pV = µhNh at constant T and p. As

for quantities per unit mass, this minimization leads to the inequality
(

∂µo
h

∂cj

)
p,T

dchdcj ≥ 0 [8] where

µo
h = µh

mh
, cj ≡

Njmj
∑h Nhmh

, j = 1, . . . , N. Identity ∑h ch = 1 reduces M by 1. With this proviso, we conclude
that validity of LTE in A requires:(

∂s
∂T

)
V,N

> 0 ;
(

∂p
∂ρ

)
T,N

> 0 ;

(
∂µo

h
∂cj

)
p,T

dchdcj ≥ 0 (6)

where ()N means that all ch’s are kept fixed, and ≥ is replaced by = only for dch = 0. The 1st, 2nd
and 3rd inequality in Equation (6) refer to thermal, mechanical and chemical equilibrium respectively.

Remarkably, Equation (6) contains information on A′ only; A′′ has disappeared altogether. Thus,
if we allow A′ to change in time (because of some unknown, physical process occurring in A′′, which
we are not interested in at the moment) but we assume that LTE remains valid at all times within A′

followed along its center-of-mass motion (v being the velocity of the center-of-mass), then Equation (6)
remains valid in A′ at all times. In this case, all relationships among total differentials of thermodynamic
quantities—like e.g., Gibbs-Duhem equation—remain locally valid, provided that the total differential da
of the generic quantity a is da = da

dt d where da
dt = ∂a

∂t + v×∇a. Thus, Equation (6) leads to the so called
‘general evolution criterion’ (GEC) [9,10]

dT−1

dt
d (ρu)

dt
− ρ ∑

h

d
(
µo

hT−1)
dt

dch
dt
−
[

ρ−1T−1 dp
dt

+
(

u + ρ−1 p
) dT−1

dt

]
dρ

dt
≤ 0 (7)

No matter how erratic the evolution of A′ is, if LTE holds within A′ at all times then the (by now)
time-dependent quantities T (t), ρ (t) etc. satisfy Equation (7) at all times.

GEC is relevant to stability. By ’stability’ we refer to the fact that, according to Einstein’s formula [4],
deviations from the Sq=1 = max state which lead to a reduction of Gibbs’ entropy (∆Sq=1 < 0) have
vanishing small probability ∝ exp

(
∆Sq=1

)
. Such deviations can e.g., be understood as a consequence

of an internal constraint which causes the deviation of the system from the equilibrium state, or as a
consequence of contact with an external bath which allows changes in parameters which would be
constant under total isolation. Let us characterize this deviation by a parameter κ which vanishes at
equilibrium. Einstein’s formula implies that small κ fluctuations near the configuration which maximizes

Sq=1 are Gaussian distributed with variance
(

∂2Sq=1
∂κ2

)−1
.

Correspondingly, as far as A′ is at LTE deviations of the probability distribution {pk} from
Boltzmann’s exponential distribution are also extremely unlikely. As A′ evolves, the instantaneous values
of the Xi’s and the Yi’s may change, but if LTE is to hold then the shape of pk remains unaffected. For
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example, T may change in time, but the probability of a microstate with energy E remains ∝ exp (−βE).
Should Boltzmann’s distribution becomes unstable at any time—i.e., should any deviation of pk from
Boltzmann’s distribution ever fail to fade out—then LTE too should be violated, and Equation (7) cease
to hold. Then, we conclude that if pk remains Boltzmann-like in A′ at all times then Equation (7) remains
valid in A′ at all times.

As for the evolution of the whole system A′ + A′′ as a whole, if LTE holds everywhere throughout the
whole system at all times then Equation (7) too holds everywhere at all times. In particular, let the whole
system A′ + A′′ evolve towards a final, relaxed state, where we maintain—as a working hypothesis—that
the word ‘steady’ makes sense, possibly after time-averaging on some typical time scales of macroscopic
physics. Since LTE holds everywhere at all times during relaxation, Equation (7) puts a constraint on
relaxation everywhere at all times; as a consequence, it provides us with information about the relaxed
state as well. In the following, we are going to show that some of the above result find its counterpart in
the q 6= 1 case.

4. q 6= 1

If q 6= 1 then Equation (5) ensures that Sq is not additive; moreover, it is not possible to find a
meaningful expression for s such that Sq 6=1 (A′ + A′′) =

∫
dVρs, and the results of Section 3 fail to apply

to Sq (see Appendix A). All the same, even if q 6= 1 the quantity

Ŝq ≡
ln
(
1 + (1− q) Sq

)
1− q

(8)

is additive and satisfies the conditions limq→1 Ŝq = Sq=1 and

dŜq

dSq
> 0 (9)

so that Ŝq = max if and only if Sq = max [1,3,6,7]. Then, a power-law-like distribution Equation (2)
corresponds to Ŝq = max. Moreover, the additivity of Ŝq makes it reasonable to wonder whether a
straightforward, step-by-step repetition of the arguments of Section 3 leads to their generalization to the
q 6= 1 case. When looking for an answer, we are going to discuss each step separately.

First of all, the choice of the xik’s does not depend on the actual value of q; then, the Xi’s are
unchanged, and Equation (4) still holds as it depends only on the averaging procedure on the pk’s.
As anticipated, Equation (2) corresponds to a maximum of Ŝq, and we replace Equation (5) with

Ŝq
(

A′ + A′′
)
= Ŝq

(
A′
)
+ Ŝq

(
A′′
)

(10)

Since we are interested in probability distributions which maximize Ŝq, hence Sq, we are allowed to
invoke Equations (11) and (12) of [3] and to write the following generalization of Equation (3):

dŜq = ŶidXi (11)

Ŷi =
Yi

1 + (1− q) Sq
(12)

Once again, we start with M = 2 and choose x1k and x2k to be the energy and the volume of the
system in the k-th microstate respectively. Together, Equations (11) and (12) and the identity ∑k (pk)

q =

1+ (1− q)Sq give Ŷ1 =
∂Ŝq
∂X1

= 1
1+(1−q)Sq

∂Sq
∂X1

= β ∑k(pk)
q

∑k(pk)
q = β and Ŷ2 =

∂Ŝq
∂X2

= 1
1+(1−q)Sq

∂Sq
∂X2

= βp ∑k(pk)
q

∑k(pk)
q =

βp, i.e., we retrieve the usual temperature and pressure of the q = 1 case [7].
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At last, Equations (4) and (10) allow us to repeat step-by-step the proof of Equation (6) and of
Equation (7), provided that LTE now means that A′ is in a state which corresponds to a maximum of Ŝq.
This way, we draw the conclusion that GEC takes exactly the same form Equation (7) even if q 6= 1. In
detail, we have shown that both T, p, X1 and X2 (i.e., U and V) are unchanged; the same holds for u and 1

ρ .
The 2nd inequality in Equation (6) remains unchanged: indeed, this is equivalent to say that the speed of
sound remains well-defined in a q 6= 1 system—see e.g., [13]. Admittedly, both the entropy per unit mass

and the chemical potentials change when we replace Sq=1 with Ŝq. However,
(

∂Ŝq
∂T

)
V,N

=
dŜq
dSq

(
∂Sq
∂T

)
V,N

has the same sign of
(

∂Sq
∂T

)
V,N

because dŜq
dSq

> 0 and
(

∂Sq
∂T

)
V,N

( ∝ a specific heat) is > 0 [12]. Thus, the 1st

inequality in Equation (6) still holds because of the additivity of Ŝq. Finally, maximization of Gibbs’ free
energy at fixed T and p follows from maximization of Ŝq as well as from Equations (4) and (10), and the
3rd inequality in Equation (6) remains valid even if the actual values of the µh’s may be changed.

Even the notion of stability remains unaffected. Equation (18) of [3] generalizes Einstein’s formula to
q 6= 1 and ensures that strong deviations from the maximum of Ŝq are exponentially unlikely. As a further
consequence of generalized Einstein’s formula, if the deviation is characterized by a parameter κ which
vanishes at equilibrium, then Equation (21) of [3] ensures that small κ fluctuations near the configuration

which maximizes Ŝq are Gaussian distributed with variance
(

∂2Ŝq
∂κ2

)−1
(and q 6= 1 fluctuations may be

larger than q = 1 fluctuations).
In spite of Equation (5), Equation (9) allows us to extend some of our results to Sq. We have seen that

configurations maximizing Ŝq maximize also Sq (where Sq is considered for the whole system A′ + A′′).

Analogously, Equation (9) implies
(

∂2Ŝq
∂κ2

)−1
∝
(

∂2Sq
∂κ2

)−1
. Given the link between Sq and Equation (2),

we may apply step-by-step our discussion of Botzmann’s distribution to power-law distributions. By now,
the role of Ŝq is clear: it acts as a dummy variable, whose additivity allows us to extend our discussion of
Boltzmann’s distribution to power-law distributions in spite of the fact that Sq is not additive.

Our discussion suggests that if relaxed states exist, then thermodynamics provides a common
description of relaxation regardless of the actual value of q. As a consequence, thermodynamics
may provide information about the relaxed states which are the final outcome of relaxation. Since
relaxed states are stable against fluctuations and are endowed with probability distributions of the
microstates, such information involves stability of these probability distributions against fluctuations.
Since thermodynamics provides information regardless of q, such information involves Boltzmann
exponential and power-law distributions on an equal footing. We are going to discuss such information
in depth for a toy model in Section 5. In spite of its simplicity, the structure of its relaxed states are far
from trivial.

Below, it turns to be useful to define the following quantities. In the q = 1 case we introduce the

contribution Πq=1 to
dSq=1;A′+A′′

dt of the irreversible processes occurring in the bulk of the whole system
A′ + A′′ (Πq=1 is often referred to as diS

dt in the literature); by definition, such processes raise Sq=1 by an
amount dt×Πq=1 in a time interval dt. During relaxation, Πq=1 is a function of time t, and Πq=1 (t) is
constrained by Equation (7). A straightforward generalization of Πq=1 to q 6= 1 is Π̂q, where dt× Π̂q

is the growth of Ŝq due to irreversible processes in the bulk; Π̂q (t) is constrained by the q 6= 1 version
of Equation (7) in exactly the same way of the q = 1 case. Finally, it is still possible to define Πq such
that the irreversible processes occurring in the bulk of the whole system A′ + A′′ raise Sq by an amount

dt×Πq. As usual by now, limq→1 Π̂q = limq→1 Πq = Πq=1 and Πq =
dŜq
dSq
× Π̂q. We provide an explicit

epxression for Πq in our toy model below.
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5. A Toy Model

5.1. A Simple Case

The discussion of Section 4 does not rely on a particular choice of the Xi’s, as the latter may be
changed via Legendre transforms and their choice obviously leaves the actual value of amount of heat
produced in the bulk unaffected. Moreover, it holds regardless of the actual value of M as dch = 0. As
an example, we may think e.g., of a M = 1 system with just one chemical species, the volume x2k of the
system in the k-th microstate is fixed and the energy x1k of the k-th microstate may change because of
exchange of heat with the external world. Finally, our discussion is not limited to three-dimensional
systems. We focus on a toy model with just 1 degree of freedom, which we suppose to be a continuous
variable (say, x) for simplicity so that we may replace pk with a distribution function P (x, t) satisfying
the normalization condition

∫
dxP = 1 at all times. We do not require that x retains its original meaning

of energy: it may as well be the position of a particle. Here and below, integrals are performed on the
whole system unless otherwise specified. The x runs within a fixed 1-D domain, which acts as a constant
V. In our toy model, the impact of a driving force A (x) is contrasted by a diffusion process with constant
and uniform diffusion coefficient D = αDT > 0. Following [11], we write the equation in P (x, t) in the
form of a non linear Fokker Planck equation:

∂P
∂t

+
∂J
∂x

= 0 ; J =
1
η

(
AP− Dq′Pq′−1 ∂P

∂x

)
(13)

Here η is a constant, effective friction coefficient, q′ ≡ 2− q, and we drop the dependence on both x
and t for simplicity here and in the following, unless otherwise specified.

The value of q is assumed to be both known and constant in Equation (13). Furthermore, if the value
of q is known and a relaxed state exists, then Equation (13) describes relaxation. Now, if we allow q to
change in time (q = q (t)) much more slowly than the relaxation described by Equation (13), then the
evolution of the system is a succession of relaxed states. Section 4. Unfortunately, available, GEC-based
stability criteria [10] are useless, as they have been derived for perturbations at constant q only. In order
to solve this conundrum, and given the fact that the evolution of the system is a succession of relaxed
states, we start with some information about such states.

5.2. Relaxed States

In relaxed states ∂
∂t ≡ 0 and Equation (13) implies

∂J
∂x

= 0 (14)

where the value of J depends on the boundary conditions (e.g., the flow of P across the boundaries).
In particular, the probability distribution [17]:

PJ=0,q ∝ expq

(∫ x
dx’

A
D

)
(15)

solves Equation (13) if and only if J = 0 everywhere, i.e., if and only if the quantity

Πq′ =
η

D

∫
dx
|J|2
P

(16)
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vanishes. The solution Equation (15) is retrieved in applications—see e.g., Equation (6) in [15] and
Equation (2) of [16]. The proportionality constant in the R.H.S. of Equation (15) is fixed by the
normalization condition

∫
dxP = 1. The quantity Πq′ in Equation (16) is the amount of entropy [11]

Sq′ =
∫

dx
P− Pq′

q′ − 1
(17)

produced per unit time in the bulk; even if ∂
∂t 6= 0 Equations (10), (11), (42) and (44) of [11] give:

Πq′ −
dSq′

dt
=

1
D

∫
dxAJ (18)

and in the R.H.S. of Equation (18) one identifies the entropy flux, representing the exchanges of entropy between
the system and its neighborhood per unit time, in the words of [11]. In relaxed states such amount is precisely

equal to Πq′ because
dSq′
dt = 0.

Admittedly, Equations (16) and (17) deal with q′, rather than with q. In contrast, it is q which appears
in Equation (15). Replacing q with q′ is equivalent to replace 1− q with q− 1; however, the duality q↔ q′

of non-extensive statistical mechanics—see Section 2 of [19] and Section 6 of [20]—ensures that no physics
is lost this way (Sq′ replaces Sq, etc.). Following Section III of [14], we limit ourselves to q < 2 for D > 0;
the symmetry q←→ q′ allow us therefore to focus further our attention on the interval 0 < q ≤ 1 [3]. Not
surprisingly, if q→ 1 then q′ → 1 and Equations (15) and (17) reduce to Boltzmann’s exponential (where∫ x dx’ A

D corresponds to −βU) and to Gibbs’ entropy respectively.
At a first glance, Sq′ is defined in two different ways, namely Equations (1) and (17). However,

identities ∑k pk = 1 and
∫

dxP = 1 allow Equations (1) and (17) to agree with each other, provided that
we identify ∑k (pk)

q′ and
∫

dxPq′ ; according to Equation (15), this is equivalent to a rescaling of αD and x.
Comparison of Equations (1) and (17) explains why it is not possible to find a meaningful expression for
the entropy per unit mass s unless q→ 1— see Appendix A.

According to [11], a H-theorem exists for Equation (13) even if J 6= 0, as far as limx|→∞ P = 0,
limx|→∞

dP
dx = 0 and A is ‘well-behaved at infinity’, i.e., limx|→∞ AP = 0; relaxed states minimize a

suitably defined Helmholtz’ free energy. ‘Equilibrium’ (Sq = max) occurs [2,14,17] when Equation (15)
holds, i.e., for ∂

∂t ≡ 0, J ≡ 0 and Πq′ = 0; boundary conditions may keep the relaxed system ‘far from
equilibrium’ ( ∂

∂t ≡ 0, J 6= 0, Πq′ > 0).
If J = 0 then Equations (16) and (18) ensure that no exchange of entropy between the system and its

neighborhood occurs and that Πq′ = 0 regardless of q′. The probability distribution in the relaxed state of
isolated systems is a Boltzmann’s exponential. It is the the interaction with the external world (i.e., those
boundary conditions which keep J far from 0) which allows the probability distribution in the relaxed
state of non-isolated systems to differ from a Boltzmann’s exponential.

If J 6= 0 then the solution of Equation (13) in relaxed state satisfies the H-theorem quoted above.
In the following we are going to discuss the ‘weak dissipation’ limit of small (but not vanishing) |J|,
which corresponds to weakly dissipating systems as Equation (16) gives Πq′ = O

(
|J|2
)
.

5.3. Weak Dissipation

The definition of J and Equation (16) show how Πq′ depends on q′. We may write this dependence
more explicitly in the weak dissipation limit. We show in Appendix B that:

Πz = Πz=0 +
∞

∑
n=1

anzn (19)
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an =
(−1)n−1 (2J)

(n− 1)!

∫ u1

0
duA (u)

[
1 +

1
n

(
ln P0 +

∫ u

0
du’A

(
u′
))] [

ln P0 +
∫ u

0
du’A

(
u′
)]n

(20)

P0 =
1

D
∫ u1

0 du exp
[∫ u

0 du’A (u′)
] (21)

∫ u1

0
duA (u) = 1 (22)

where Πz=0 ≡ Πq′=1 = Πq=1, z ≡ q′ − 1 = 1 − q and 0 ≤ z < 1 as 0 < q ≤ 1. Together,
Equations (19)–(22) allow computation of Πz (hence, of Πq′ ) once A (u) and D are known.

5.4. Stable Distributions of Probability

The evolution of the system is a succession of relaxed states, whose nature depends on J. If J = 0 then
Gibbs’ statistics holds and the probability distribution of the relaxed state is a Boltzmann exponential.

For weakly dissipating systems |J| 6= 0 is small and each relaxed state is approximately
an equilibrium (Sz = max, hence Ŝz = max). It follows that Equation (15) describes the
probability distribution and that small κ fluctuations near a relaxed state are Gaussian distributed

with variance
(

∂2Ŝz
∂κ2

)−1
.

Now, stability requires that fluctuations, once triggered, relax back to the initial equilibrium state,
sooner or later. In other words, the larger the variance the larger the fluctuations of κ which the relaxed
state is stable against. Accordingly, the relaxed state which is stable against the fluctuations of κ of largest

variance corresponds to ∂2Ŝz
∂κ2 = 0. Then, Equation (9) gives ∂2Sz

∂κ2 ∝ ∂2Ŝz
∂κ2 = 0.

Arbitrariness in the definition of κ allows us to identify it with a perturbation of z (so that dκ = dz).
Moreover, for small |J| (i.e., negligible entropy flux across the boundary) Equation Equation (18) makes
any increase of Sz in a given time interval ∆t to be equal to ∆t×Πz, so that ∆t× d2Πz

dz2 = ∂2Sz
∂z2 . Thus,

the most stable probability distribution (i.e., the probability distribution which is stable against the
fluctuations of z of largest amplitude) is given by Equation (15) with q = 1− zc and zc such that:(

d2Πz

dz2

)
z=zc

= 0 ; 0 < zc < 1 (23)

According to Equation (23), dΠz
dz achieves an extremum value at z = zc. In order to ascertain if this

extremum is a maximum or a minimum, we recall that the change dSz = dz×
(

dSz
dz

)
zc
= dz×∆t×

(
dΠ
dz

)
zc

in Sz due to a fluctuation dz of z around z = zc occurring in a time interval ∆t is ≥ 0 (this is true for
Sz=0 as fluctuations involve irreversible processes and for Sz 6=0 as Equation (7) describes relaxation the
same way regardless of the value of z); it achieves its minimum value 0 if J = 0 and the relaxed state
is a true equilibrium (Sz=zc = max,

(
dSz
dz

)
zc

∝
(

dΠ
dz

)
zc
= 0). In the weak dissipation limit the structure

of the relaxed state is perturbed only slightly, and we may still reasonably assume
(

dΠ
dz

)
zc
= min even

if its value ∝ O
(
|J|2
)

is 6= 0 (again, Equation (7) acts the same way). In agreement with Equation (23),
we obtain: (

d3Πz

dz3

)
z=zc

> 0 (24)

Remarkably, Equations (23) and (24) hold regardless of the actual relaxation time of the fluctuation;
it applies therefore also to the slow dynamics of z (t). We stress the point that Equations (23) and (24)
have no means been said to ensure the actual existence of a relaxed configuration in the weak dissipation
limit with something like a most stable probability distribution. But if such a thing exists, then it behaves
as a power law with exponent 1

1−q = z−1
c if 0 < zc < 1, where zc corresponds to a minimum of dΠz

dz
according to Equations (23) and (24). We rule out Boltzmann exponential in this case; indeed, if the power
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law is stable at all then it is stable against larger fluctuations than the Boltzmann exponential, because
fluctuations are larger for 0 < z < 1 than for z = 0 [3]. Together, Equations (19)–(24) provide us with zc

once A (u) and D are known. We discuss an application below.

6. The Impact of Noise on 1D Maps

6.1. Boltzmann vs. Power Law

We apply the results of Section 5 to the description of the impact of noise on maps. Let us introduce
a discrete, autonomous, one-dimensional map

Qi+1 = G (Qi) (25)

where i = 0, 1, 2, . . ., Qi ≥ 0 for all i’s, the initial condition Qi=0 = Q0 is known and G is a known
function of its argument. If the system evolves all along a time interval τ, then Equation (25) leads to
the differential equation dx(t′)

dt′ = A (x) , provided that we define A (x) ≡ G (x)− x, identify Qi+1 and Qi

with x(t′+∆t′)
∆t′ and x(t′)

∆t′ respectively, write t′ = i×∆t′ and consider a time increment ∆t′ � τ (’continuous
limit’). We suppose A (x) to be integrable and well-behaved at infinity (see Section 5).

Map Equation (25) includes no noise. The latter may be either additive or multiplicative, and
may affect Qi at any ‘time’ i; for instance, it may perturb Q0. In the continuous limit, we introduce a
distribution function P (x, t) such that P (x, t) dx is the probability of finding the coordinate in the interval
between x and x + dx at the time t ≡ η × t′. We discuss the role of the constant η > 0 below. In order to
describe the impact of noise, we modify the differential equation above as follows:

η
dx
dt

= A (x) + h (x, t) ζ (t) where A (x) ≡ G (x)− x (26)

where h (x, t) ∝ P (x, t)
z
2 , 0 ≤ z < 1, the noise ζ (t) satisfies 〈ζ〉 = 0 and 〈ζ (t) ζ (t′)〉 = 2ηDδ (t− t′), and

the brackets 〈〉 denote time average [11]. We leave the value of z unspecified.
According to the discussion of Equation (18) of [14], Equation (26) is associated with Equation (13)

which rules P (x, t) dx. The choice of D in Equation (13) is equivalent to the choice of the noise level
in Equation (26), and our assumption that D is constant and uniform in Section 5 means just that the
noise level is the same throughout the system at all times. Well-behavedness of A at infinity allows
H-theorem to apply to Equation (13). Let a relaxed state exist as an outcome of the evolution described
by Equation (13). We know nothing about |J|. For the moment, let us discuss the case J 6= 0.

If J 6= 0 then the definition of J in Equation (13) allows us to choose a value η large enough that
the weak dissipation limit of small |J| applies. Once the dynamics (i.e., the dependence of G on its own
argument) and the noise level (i.e., D) are known, then Equations (19)–(22) allow us to compute the value
zc of z which minimizes dΠz

dz . According to our discussion of Equations (23) and (24) in Section 5, if such
minimum exists and 0 < zc < 1 then the most stable probability distribution is power-like with exponent
1
zc

. Otherwise, no relaxed state may exist for J 6= 0. If, nevertheless, such state exists, then J = 0 and its
probability distribution is a Boltzmann exponential.

We have just written down a criterion to ascertain whether the outcome Qi of a map Equation (25)
follows an exponential or a power law distribution function as i → ∞ (and provided that such a
distribution function may actually be defined in this limit) whenever the map is affected by noise, and
regardless of the nature (additive or multipicative) of the latter. Only the map dynamics G (Qi) and the
noise level D are required. In contrast with conventional treatment, no numerical solution of Equation (25)
is required, and, above all, q is no ad hoc input anymore. This is the criterion looked for in Section 1.
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6.2. An Example

As an example, we consider the map (25) where

G (x) = rx exp (−|1− a|x) (27)

and r and a are real, positive numbers. For typical values a = 0.8 and 1 < r < 7 Equations (25) and (27)
are relevant in econophysics, where x and P are the wealth and the distribution of richness respectively.
We refer to Ref. [21]—and in particular to its Equation (2)—where noise is built in to the initial conditions
(which are completely random), and after a transient the system relaxes to a final, asymptotical state, left
basically unaffected by fluctuations.

We assume a = 0.8 everywhere in the following. Figure 1 displays d2Πz
dz2 (normalized to 2J) vs.

z as computed from Equations (19)–(22) and (27) at various values of r and with the same value of
D (= 0.1). When dealing with Equation (19) we have taken into account powers of z up to z7 (included).
We performed all algebraic computations and definite integrals with the help of MATHCAD software. If
r ≤ 1 then no zc is found which satisfies both Equations (23) and (24), so that Boltzmann distribution is
expected to describe the asymptotic dynamical state of the system. This is far from surprising, as only
damping counteracts noise in Equation (26) in the r → 0 limit, like in a Brownian motion. In contrast,
if r > 1 then all zc’s lies well inside the interval 0 < zc < 1, and a power law is expected to hold; the
correponding exponential depends on r only weakly—see Figure 2—as the values of the zc’s are quite
near to each other. Finally, Figure 3 displays how zc depends on D (i.e., the noise level) at fixed r; it turns
out that noise tends to help relaxation to Boltzmann’s distribution, as expected.

Figure 1. d2Πz
dz2 (vertical axis) vs. z (horizontal axis) for r = 1/3 (black diamonds), r = 1/2 (empty circles),

r = 2 (triangles), r = 4 (squares), r = 6 (empty diamonds). In all cases D = 0.1. If r = 1/3 then the slope
of the curve at the point z = zc where it crosses the d2Πz

dz2 = 0 axis is negative, i.e., Equation (24) is violated.
If r = 1/2 then zc lies outside the interval 0 ≤ zc < 1, i.e., Equation (23) is violated. Both Equations (23)
and (24) are satisfied for r = 2 (with zc = 0.452), r = 4 (with zc = 0.438) and r = 6 (with zc = 0.412).
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Figure 2. Exponent 1
zc

(vertical axis) of the power-law distribution function of the relaxed state vs.
r (horizontal axis).

Figure 3. d2Πz
dz2 (vertical axis) vs. z (horizontal axis) for D = 0.001 (black diamonds), D = 0.01 (empty

circles), D = 0.1 (triangles), D = 2 (squares), D = 10 (empty diamonds). In all cases r = 4. Even if
a relaxed state exists, the larger D, the stronger the noise, the nearer zc to the bounds of the interval
[0, 1). If D > 1 then zc does not belong to the interval, and Boltzmann’s exponential distribution rules
the relaxed state.
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Our results seem to agree with the results of the numerical simulations reported in [21]. If r < 1
then the average value of x relaxes to zero (just as predicted by standard analysis of Equation (25) in
the zero-noise case) and random fluctuations occur. In contrast, if r > 1 then the typical amplitude of
the fluctuations is much larger; nevertheless, a distribution function is clearly observed, which exhibits
a distinct power-law, Pareto-like behaviour. The exponent is 2.21, in good agreement with the values
displayed in our Figure 2. (The exponent in Pareto’s law is ≈2.15). We stress the point that we have
obtained our results with no numerical solution of Equation (25) and with no postulate concerning
non-extensive thermodynamics, i.e., no assumption on q.

7. Conclusions

Gibbs’ statistical mechanics describes the distribution of probabilities of the microstates of
(grand-)canonical systems at thermodynamical equilibrium with the help of Boltzmann’s exponential. In
contrast, this distribution follows a power law in stable, steady (‘relaxed’) states of many physical systems.
With respect to a power-law-like distribution, non-extensive statistical mechanics [1,2] formally plays
the same role played by Gibbs’ statistical mechanics with respect to Boltzmann distribution: a relaxed
state corresponds to a constrained maximum of Gibbs’ entropy and to its generalization Sq in Gibbs’
and non-extensive statistical mechanics respectively. Generalization of some results of Gibbs’ statistical
mechanics to non-extensive statistical mechanics is available; the latter depends on the dimensionless
quantity q and reduces to Gibbs’ statistical mechanics in the limit q → 1, just like Sq reduces to Gibbs’
entropy Sq=1 in the same limit. The quantity q measures the lack of additivity of Sq and provides us with
the slope of the power-law-like distribution, the Boltzmann distribution corresponding to q = 1: Sq is an
additive quantity if and only if q = 1.

The overwhelming success of Gibbs’ statistical mechanics lies in its ability to provide predictions
(like e.g., the positivity of the specific heat at constant volume) even when few or no information on the
detailed dynamics of the system is available. Stability provides us with an example of such predictions.
According to Einstein’s formula, deviations from thermodynamic equilibrium which lead to a significant
reduction of Gibbs’ entropy (∆Sq=1 < 0) have vanishing small probability ∝ exp

(
∆Sq=1

)
. In other words,

significant deviations of the probability distribution from the Boltzmann exponential are exponentially
unlikely in Gibbs’ statistical mechanics.

Moreover, additivity of Sq=1 and of other quantities like the internal energy allows to write all of
them as the sum of the contributions of all the small parts the system is made of. If, furthermore, every
small part of a physical system corresponds locally to a maximum of Sq=1 (‘local thermodynamical
equilibrium, LTE) at all times during the evolution of the system, then this evolution is bound to satisfy
the so-called ‘general evolution criterion’ (GEC) [9], an inequality involving total time derivatives of
thermodynamical quantities which follows from Gibbs-Duhem equation. In particular, GEC applies to
the relaxation of perturbations of a relaxed state of the system, if any such state exists.

In contrast, lack of a priori knowledge of q limits the usefulness of non-extensive statistical mechanics;
for each problem, such knowledge requires either solving the detailed equations of the dynamics
(e.g., the relevant kinetic equation ruling the distribution probability of the system of interest) or
performing a posteriori analysis of experimental data, thus reducing the attractiveness of non-extensive
statistical mechanics.

However, it is possible to map non-extensive statistical mechanics into Gibbs’ statistical
mechanics [1,3,6]. A quantity Ŝq exists which is both additive and monotonically increasing function of
Sq for arbitrary q. Thus, relaxed states of non-extensive thermodynamics correspond to Ŝq = max, and
additivity of Ŝq allow suitable generalization of both Einstein’s formula and Gibbs-Duhem equation to
q 6= 1 [3], which in turn ensure that strong deviations from this maximum are exponentially unlikely and
that LTE and GEC still hold, formally unaffected, in the q 6= 1 case respectively.

These generalizations allow thermodynamics to provide an unified framework for the description of
both the relaxed states (via Einstein’s formula) and the relaxation processes leading to them (via GEC)
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regardless of the value of q, i.e., of the nature—power law (q 6= 1) vs. Boltzmann exponential (q = 1)—of
the probability distribution of the microstates in the relaxed state.

For further discussion we have focussed our attention on the case of a continuous, one-dimensional
system described by a nonlinear Fokker Planck equation [11], where the impact of a driving force is
counteracted by diffusion (with diffusion coefficient D). It turns out that it is the the interaction with the
external world which allows the probability distribution in the relaxed states to differ from a Boltzmann’s
exponential. Moreover, Einstein’s formula in its generalized version implies that the value zc of z ≡ 1− q
of the ‘most stable probability distribution’ (i.e., the probability distribution of the relaxed state which is
stable against fluctuations of largest amplitude) corresponds to a minimum of dΠz

dz , Πz × dt being the
amount of Sz produced in a time interval dt by irreversible processes occurring in the bulk of the system.
Finally, if a relaxed state exists and 0 < zc < 1, then the most stable probability distribution is a power
law with exponent 1

zc
; otherwise, it is a Boltzmann exponential. Since Πz depends just on z, D and the

driving force, the value of zc—i.e., the selection of the probability distribution—depends on the physics
of system only (i.e., on the diffusion coefficient and the driving force): a priori knowledge of q is required
no more.

We apply our result to the Fokker Planck equation associated to the stochastic differential equation
obtained in the continuous limit from a one-dimensional, autonomous, discrete map affected by noise.
Since no assumption is made on q, the noise may be either additive or multiplicative, and the Fokker
Planck equation may be either linear or nonlinear. If the system evolves towards a system which is stable
against fluctuations then we may ascertain if a power-law statistics describes such state—and with which
exponent—once the dynamics of the map and the noise level are known, without actually computing
many forward orbits of the map.

As an example, we have analyzed the problem discussed in [21], where a particular one-dimensional
discrete map affected by noise leads to an asymptotic state described by a Pareto-like law for selected
values of a control parameter. Our results agree with those of [21] as far as both the exponent of the
power law and the range of the control parameter, with the help of numerical simulation of the dynamics
and of no assumption about q.

Extension to multidimensional maps will be the task of future work.
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GEC: General evolution criterion
LTE: Local thermodynamical equilibrium

Appendix Non-Existence of s for q 6= 1

If q→ 1 then Sq′ → Sq=1 = −
∫

dxP ln P, which leads immediately to Sq=1 =
∫

dxρs with ρ ∝ P and
s ∝ ln P. Let us suppose that a similar expression holds for Sq and q 6= 1. Of course, ρ does not depend

on q, so we keep ρ ∝ P even if q 6= 1. In the latter case, Equation (17) gives Sq′ ∝
∫

dxρ 1−Pq′−2

q′−1 , and

agreement of Equation (1) with Equation (17) requires that we identify ∑k (pk)
q′ and

∫
dxPq′−2. However,

this identification is possible at no value of q′, because the normalization conditions ∑k pk = 1 and∫
dxP = 1 make the pk’s and P to transform like pk → pk × k−1 and P→ P× k−1 respectively under the

scaling transformation x → kx, so that ∑k (pk)
q′ → k−q′ ×∑k (pk)

q′ and
∫

dxPq′−2 → k2−q′ ×
∫

dxPq′−2.
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Identification of ∑k (pk)
q′ and

∫
dxPq′−2 is impossible because these two quantities behave differently

under the same scaling transformation; then, no definition of s is self-consistent unless q = 1.
This result follows from the non-additivity of Sq: if q 6= 1 then the entropy of the whole system is

not the sum of the entropies of the small masses the systems is made of. Physically, this suggests that
strong correlations exixt among such masses; indeed, strongly correlated variables are precisely the topic
which non-extensive statistical mechanics is focussed on [18].

Accordingly, straightforward generalization of LTE and GEC with the help of Sq to the q 6= 1 case is
impossible. This is why we need the additive quantity Ŝq in order to build a local thermodynamics, and
to generalize the results of Section 3 in Section 4. As discussed in the text, the results of Section 4 may

involve Πq rather than Π̂q just because dŜq
dSq

> 0.

Appendix Proof of Equations (19)–(22)

We derive from both Equations (14) and (16) and the definition of J the Taylor-series development
Equation (19) of Πz = Πq′ in powers of z, centered in z = 0:

Πz = Πz=0 +
∞

∑
n=1

anzn ; an =
(−1)n−1

(n− 1)!
(2J)

∫
du

d ln PJ,q=1

du

(
1 +

ln PJ,q=1

n

) (
ln PJ,q=1

)n−1 (A1)

where u ≡ x
D and PJ,q=1 = PJ,q=1 (u) is the q′ = q = 1 solution for arbitrary J with the boundary

condition PJ,q=1 (u = u0) = P0 of Equation (13). Starting from Equations (13) and (15) (for q = 1), the
method of variation of constants gives:

PJ,q=1 (u) =
{

P0 − η J
∫ u

u0

du’ exp
[
−
∫ u′

u0

du”A
(
u′′
)]}

exp
[∫ u

u0

du’A
(
u′
)]

(A2)

The normalization condition holds

1 =
∫

dxPJ,q=1 (x) = D
∫

duPJ,q=1 (u) (A3)

where PJ,q=1 is approximately given by Equation (15) in weakly dissipating systems. We assume x ≥ 0
and u0 = 0 with no loss of generality (originally, x1k is an energy). We define u1 such that P0 =

η J
∫ u1

u0 du’ exp
[
−
∫ u′

0 du”A (u′′)
]
. It is unlikely that βU � 1; thus, we approximate Equation (A2) as:

PJ,q=1 = PJ,q=1 (0) exp
(∫ u

0
du’A

(
u′
))

for 0 ≤ u ≤ u1 ; PJ,q=1 = 0 otherwise (A4)

According to Equation (A4), the domain of integration in Equation (19), Equations (A2) and (A3)
reduces to 0 ≤ u ≤ u1. Thus, Equations (19) and (A4) lead to Equation (20), and Equations (A3) and
(A4) lead to Equation (21). Finally, Equations (14), (18) and (A4) lead to: Πq′ = J

∫ u1
0 duA in relaxed state,

while Equations (14), (16) and (A4) give: Πq′ =
η|J|2

PJ,q=1(0)

∫ u1
0 du exp

(
−
∫ u

0 du’A
)
. After eliminating Πq′

and replacing the definition of u1 we obtain Equation (22).
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