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Boltzmann’s exponential
and Gibbs’
thermodynamics



Gibbs’ entropy (normalized to kg) S= - Z Pk Inpy
K

Once properly maximized, leads to

T e o e~ Pek
Boltzmann’s exponential distribution Pic
of microstates in canonical systems
(generalized to grand-canonical...)
The probability of a fluctuation of an arbitrary w(l) eAS(A)

parameter A around a S = max state follows
Einstein’s formula

and the variance of such fluctuation is 0%S -1
(57)



Gibbs’ entropy is additive: if A, A” are S(A"+ A7) =5(A") +S(A")
independent systems then

Then, it can be written as the sum of the Gibbs’

entropies of all small mass elements the system is made S = fps dV
of — a local entropy density s exists (p mass density)

If Local Thermodynamical Equilibrium (LTE):

S = max
(— Gibbs-Duhem)



If LTE holds everywhere and at all times: General Evolution Criterion (GEC)

dT ' d (pu) d (T71) dey —1p-14p 1\ dT '] dp
_ _ i 2 -
it dr " ; dt dt [‘D LT (”+p P ) dt ] ar =Y

If t = oo and the system relaxes to a stable, steady (relaxed) state with
Boltzmann exponential distribution of microstates in all small mass
elements at all times, then GEC rules relaxation regardless of detailed model

Glansdorff et al. 1964, Di Vita 2010



g-exponential and Tsallis’
thermodynamics



Tsallis” entropy (normalized to kg) Sqg= — Z(pk)q In, pi
k

Tsallis 1988, Tsallis et al. 1998
lim Sqg =S
q—1

}Ii_r)ri Ing(x) = In(x)

Once properly maximized, leads to

g-exponential distribution of microstates

In canonical systems (generalized to grand-
canonical...) — power law with exponent 1/(1 — q)

Py & equ‘ﬁek

lim exp, (x) = exp (x)
q-1

What about g ?



Tsallis” entropy is nonadditive:

Sq(A" + A") = S,(A") + Sq(A") + (1 — q)S,(A")S, (A"

Then, it can not be written as the sum of the Gibbs’ entropies > <
of all small mass elements the system is made of ACACA

g

— no local entropy density s exists

— NO LTE — NO GEC — only model-dependent info
on relaxation (as t — o0) with power-law distribution of microstates

What about g ?



NLFP



E.g.: g-dependent, possibly nonlinear, 1D Fokker-Planck (NLFP) equation for
continuous distribution function P(x, t), where a force A = A(x) is counteracted
by a diffusion process, represented by a diffusion coefficient D

ap+a}_0 ; ;=1<AP—D¢;’P‘?’—1£) A= A(x) g =2—q

o ox 1 ox

Casas et al. 2012, Wedemann et al. 2016

What about g ?



NFLP for /] = 0

X
— Steady state solution is just the g-exponential:  Pj_, « exp, ([ dxr%)

P—P7 o
T ismax. when the solutionis Pj_g,

BN %:fﬁ¢_

Haubold et al. 2004, Ribeiro et al. 2012, Wedemann et al. 2016

What about g ?



NFLP for ] # 0
— An H-theorem holds (provided that A(x) is well-behaved at )

— Relaxation does occur!

Casas et al. 2012

What about g ?



NFLP for/ # 0

das . 2
Casas et al. 2012

I1, is the amount (> 0) of Sy which is produced inside the bulk of the systemin a
time interval dt .

% [dxA} is the amount of S which is exchanged with the external world in dt .

— | represents the interaction with the external world;
in isolated system | = O (its value is a boundary condition on NLFP)

If a perturbation leaves the latter interaction unaffected then the increment dS,
of §4, in a time interval dt is dSq, = dt - Iy

What about g ?



Mapping Tsallis onto
Gibbs



Tsallis 1988,
Abe 2001,

Vives et al. 2002

A monotonically increasing, additive function of S, exists even for g # 1 !!

g _]n{l—l—{l—q)Sq)
q—= l—q

limg 1 Sy = S,—4

These facts have a lot of consequences... —



— 3’; = max if and only if §; = max

— Moreover: LTE, GEC formally unchanged provided that we replace S, with 3‘;
(mapping of Tsallis” onto Gibbs’ thermodynamics)

— ... and relaxation behaves formally the same way regardless of g, in particular...

— 9255\ "
— ... the variance of fluctuations of A around a §; = max state is (a};)

o ds; . A
— ... which implies (as d_Sq > () that the variance around a S, = max state is « (akg)
q

N.B. variance is always larger for Tsallis than for Gibbs! Vives et al. 2002



The quest for q:
NLFP ..withJ =0



In NLFP? q =const. However, nothing changes if g = q(t)
provided that |d Inqg/dt| > |d InP/dt| (slow evolution)

— Slow evolution is a succession of relaxed states

— If | = 0 (i.e., the interaction with the external world is weak) then the relaxed state
at time t corresponds justto S /.y = max withP = Pj_qq ..

. . (925 \ 7!
— ... and the variance of fluctuations of A around a relaxed state is « ( MZ')

. . . . . 62 ]_'[-'-]" -1
— ... which in a time interval dt is o< dt - ( iz )

The larger the variance, the larger the fluctuations of A which the relaxed state is stable
against —

the larger the variance, the more stable the relaxed state, the larger the fluctuations of
A which the probability distribution of the relaxed state is stable against

A is arbitrary— we may take d A = dq’, i.e. we deal with stability against (slow)
fluctuations of the slope (depending on q’) of the probability distribution



92 1y

aqr? =0

The most stable distribution function against fluctuations of g':

o 1y
aqr

— This corresponds to an extremum of

— This is a minimum, as far as | = 0 at least. In the latter case, indeed:

—>dSy =dt - dlly = dt-dq’é—q, [l; s the amount of S, produced in the time

dt by the fluctuation dq’; it is = 0 for ¢’ = 1 (Gibbs’ case!) as fluctuations
involve irreversible physics and achieves its minimum value 0 at equilibrium
(where dS = 0) of an isolated system (where | = 0).

— But GEC describes relaxation the same way regardless of g’ and the structure of
: e : d
the relaxed state is modified only slightly for /] = 0 , hence T 1,

is still a minimum (even if non-zero), not a maximum!

Allowable rangeforz=q' —1=1—-¢q: 0<z <1 (z = 0is Gibbs) Borland 1998



If | = 0, Taylor-series development of | in powers of z lead to the following

. d
useful formulas, which allow us to compute -, 11 once A(x) and D are known:

[, =1L+ Z apz"

n=1

"= {_(1;3”—_11)(12}} ) dua [1—% (lnPqu_/(;” duA (u*)ﬂ []nPg—l—/D“ du’ A (_Hf)]”

1
D fﬂui duexp :‘fﬂu du'A (u')]

Py =

1
duA (u) =1
Jo



A rule for finding q in our NLFP!

If NLFP leads to a relaxed state (well-behaved A(x)) and ] = 0 then the
probability distribution of microstates in the relaxed state which is more stable
against slow fluctuations of its own slope is the g-exponential with q =1 —z

. . _ d :
(similar to a power law with exponent z~1) and z such that = IT,= min. and that
0<z<1

In this case, power-law is stable against larger fluctuations than Boltzmann
epoxnential, because the variance of the latter is always lower —

If such z does not exist, then if a relaxed state exists then its probability
distribution is a Boltzmann’s exponential .

N.B. Variance of fluctuations around a power-law distribution are always larger.

BUT... Why we have to dependonJ = 07?7?




The quest for q:
noisy 1D maps



Application: 1D, discrete, autonomous map
QH—I =G {QJ\J

The system evolves along a time interval > At' (i -
o)

Qi+1 =

Qi—p = Qg is known



Noise? Stochastic equation t=mn-t

Borland 1998

dx _
Tar =

A(x)+h(x,t)l(t) where A(x)=G(x)—x
N.B. z unknown; noise may be either additive (z = 0) or multiplicative ;
A(x) and D represent dynamics and noise level respectively;

11> 0 is arbitrary.



The stochastic equation is associated with NLFP (the probability distribution of
the solution x of the stochastic equation is the solution P of NLFP):

oP o] . 1 /pa'—1 9P
8‘f+8x_0 ' I_r;(AP Dy'P ox

1 is arbitrary — we choose it in such a way that the approximation / = 0 applies
— we need no more justification of /] = 0 and our rules apply!

Relaxed solutions of NLFP <> the probability distributions for the noise affected Q;
as i — oo — then...



A rule for noise-affected maps!

Let a 1D, discrete, autonomus map Q;,, = G(Q;) be affected by noise (no matter
if additive or multiplicative) and let the Q;’s distribute as i — oo along a
probability distribution P(Q;). Then:

a) If z exists such that 0 < z < 1 and % I1, = min then P(Q;) is a g-exponential
with q = 1 — z (similar to a power law with exponent z~1)

b) Otherwise, P(Q;) is a Boltzmann’s exponential

N.B. Variance of fluctuations around a power-law distribution are always larger.
N.B. Only info on dynamics (A(x) = G(x) — x) and level noise (D) required!!!



Theory vs. (numerical) exp.



Example: the map of Sanchez et al. 2007 G(x) =rxexp(—|1—alx)

Relevant to econophysics fora = 0.8,0 <r <7  (x = Ois richness, P(x) its
distribution). Noise applied to the initial condition (which gets randomized).

(x = 0 — Boltzmann’s exponential « e “A* = Gaussian (random) e~ B¥%in y = Vx)

Looking (with MATHCAD) for the minima of %1 I intheinterval 0 <z < 1,

d2
the easiest way is to look for zeroes of 02 [

: : : o\ : a3
which cross the zero line with positive slope; this corresponds to = > ¢



We have utilized the following formulas (power series up to 7-th power of z)

A(w) =G(u) —u

]_'[Z = ]_‘[Z:[J' —|_ Z ﬂ'”E”

n=1

= (_(1}3”__11512” | ;1 duA (u) [1—% (lnPw_/[;" du’A (uf)ﬂ [anﬁfﬂ“ du’ A (_uf]r

1
D fuui duexp :.fn}“ du’A (u')]

Py =

|“’1
duA (u) =1
Jo



2

If a = 0.8, D = 0.1 then the looked-for zeroes of % [T, which cross the zero
Z

line with vertical slope are found:

forr =2 (at z = 0.452), corresponding to a power law with exponent 04—152 = 2.21

forr =4 (at z = 0.438), corresponding to a power law with exponent 04—138 = 2.28

forr =6 (at z = 0.412) corresponding to a power law with exponent ﬁ = 2.43

No such zeroes are found for values r < 1 of r, which correspond
therefore to exponentials. (This makes sense, as Brownian motion
is retrieved for r — 0).

— Variance of fluctuations is larger forr > 1 thanforr < 1



In all cases D = 0.1
a= 0.8

&



exponent

24r

As 1 grows, the exponent of the power law saturates




The larger the noise, the larger
D, the easier the relaxation to Boltzmann’s distribution

'1;2: (vertical axis) vs. z (horizontal axis) for D = 0.001 (black diamonds), D — 0.01 (empty
circles), D = 0.1 (triangles), D = 2 (squares), D = 10 (empty diamonds). In all cases r — 4. Even if a
relaxed state exists, the larger D, the stronger the noise, the nearer z. to the bounds of the interval [0, 1). If
I = 1 then z. does not belong to the interval, and Boltzmann’'s exponential distribution rules the relaxed

state.



Comparison with the results of Sanchez et al. 2007

If r > 1: power law for with exponent 2.21 Pareto-like!

If r < 1 :random fluctuations (around the x = 0 attractor of G)

Typical amplitude of fluctuations is much larger for r > 1 than forr < 1.



From Sanchez et al. 2007
For i — oo, fluctuations around mean value are much larger whenr > 1
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Agent Richness Frecuency

From Sanchez et al. 2007

P(x) fori » oo ; —

dlnP

= 2.21

10° |

10



Conclusions



Conclusions - |

Gibbs’ thermodynamics describes the probability distribution of microstates in
relaxed states, their stability against fluctuations and the process of relaxation with
the help of Boltzmann’s exponentials, Einstein’s formula and Glansdorff et al’s
general evolution criterion (GEC) respectively.

Tsallis’ thermodynamics describes the probability distribution of microstates in
relaxed states with the help of g-exponentials (— power laws). Non-additivity
prevents it from going further. Moreover, g is unknown, and is usually postulated - or
obtained via lengthy numerical solution of the equations of motion.

Mapping of Tsallis” entropy onto an additive quantity with the same concavity allows
generalization of both Einstein- and GEC-based conclusionsto g # 1

Thus, relaxed states (if any exist) have to enjoy the same properties regardless of g —
and the same is true for the relaxation processes leading to such states.



Conclusions - 1l

If a relaxed state exists, then g # 1 Einstein’s rule and GEC allow us to identify the
most stable probability distribution of microstates in a relaxed state (i.e., the
probability distribution which the fluctuations of the largest amplitude relax to) as

the g-exponential whose ¢ =1 — z € (0,1) minimizes dizllz , Where TII, is the
amount of Tsallis’ entropy produced per unit time in the bulk of the relaxed system.

If no such g exists, then the most stable probability distribution of microstates in the
relaxed state (if any exists) is a Boltzmann exponential.

Explicit expressions for [[.ind its derivatives are provided for in the particular case of
a system described by a 1D, nonlinear Fokker-Planck (NLFP) equation and weakly
interacting with the external world. These expressions require just the knowledge of
the diffusion coefficient and of the driving force acting in the NLFP.



Conclusions - 1l

We associate our NLFP with the stochastic equation obtained in the continuous limit from
a 1D, autonomous map affected by noise. Relaxed solutions of NLFP (if any exists) <> the
asymptotic (i — oo) probability distributions P(Q;) (if any exists) for the outcome Q; of
the noise-affected map. Once the level of noise and the map dynamics are known, we
may unambiguously obtain our NLFP and compute its diffusion coefficient and its driving
force as well as I1, and its derivatives.

Regardless of the nature (additive vs. multiplicative) of the noise, if P(Q;) exists then:

a) If zexists suchthat0 <z < 1 and % [l = min then P(Q;) is a g-exponential with

q =1 — z (similar to a power law with exponent z~1);
b) Otherwise, P(Q;) is a Boltzmann’s exponential.

In all cases, variance of fluctuations around a power-law distribution are always larger
than around a Boltzmann’s exponential.

Agreement with Pareto-like simulations of Sanchez et al. 2007 . No egs. of motion solved!



From 1D to 2D maps and
beyond... ?




