
EXPONENTIAL OR POWER LAW - 
HOW TO SELECT A STABLE 

DISTRIBUTION OF PROBABILITY IN A 
A PHYSICAL SYSTEM 

Andrea Di Vita 

D.I.C.C.A., Università di Genova, Italy 

The 4th International Electronic Conference on Entropy and Its Applications (ECEA 2017), 
21 November–1st December 2017; Sciforum Electronic Conference Series, Vol. 4, 2017 



Boltzmann’s exponential 
and Gibbs’ 

thermodynamics 



𝑆 =  −  𝑝𝑘 ln 𝑝𝑘
𝑘

 Gibbs’ entropy (normalized to 𝑘𝐵) 
  

Once properly maximized, leads to  
Boltzmann’s exponential distribution 
of microstates in canonical systems  
(generalized to grand-canonical…) 

𝑝𝑘 ∝ 𝑒
−𝛽𝜀𝑘  

The probability of a fluctuation of an arbitrary  
parameter  around a 𝑆 = max state follows 
Einstein’s formula 

𝑤   ∝ 𝑒∆𝑆   

and the variance of such fluctuation is 𝜕2𝑆

𝜕2

−1

 



Gibbs’ entropy is additive: if A’,  A’’ are 
independent systems then 

𝑆 𝐴′ + 𝐴′′ = 𝑆 𝐴′ + 𝑆 𝐴′′  

Then, it can be written as the sum of the Gibbs’ 
entropies of all small mass elements the system is made 
of  a local entropy density 𝑠 exists ( mass density) 

𝑆 =   𝜌𝑠 𝑑𝑉 

If Local Thermodynamical Equilibrium (LTE):  
( Gibbs-Duhem) 

𝑠 = 𝑚𝑎𝑥 



If LTE holds everywhere and  at all times: General Evolution Criterion (GEC)  
 

Glansdorff et al. 1964, Di Vita 2010 

If 𝑡 → ∞ and the system relaxes to a stable, steady (relaxed) state with 
Boltzmann exponential distribution of microstates in all small mass 
elements at all times, then GEC rules relaxation regardless of detailed model 



q-exponential and Tsallis’ 
thermodynamics 



Tsallis’ entropy (normalized to 𝑘𝐵) 
  

Once properly maximized, leads to  
q-exponential distribution of microstates 
In canonical systems (generalized to grand-
canonical…)  power law with exponent 1 1 − 𝑞  

𝑆𝑞 = −  𝑝𝑘
𝑞 ln𝑞 𝑝𝑘

𝑘

 

𝑝𝑘 ∝ 𝑒𝑥𝑝𝑞
−𝛽𝜀𝑘  

lim
𝑞→1
𝑆𝑞 = 𝑆 

What about 𝒒 ? 

lim
𝑞→1
𝑒𝑥𝑝𝑞 𝑥 = 𝑒𝑥𝑝 (𝑥) 

lim
𝑞→1
𝑙𝑛𝑞 𝑥 = 𝑙𝑛 (𝑥) 

Tsallis 1988, Tsallis et al. 1998 



Then, it can not be written as the sum of the Gibbs’ entropies  
of all small mass elements the system is made of  
 no local entropy density 𝑠 exists 

 NO LTE  NO GEC  only model-dependent info  
     on relaxation (as 𝑡 → ∞) with power-law distribution of microstates 

Tsallis’ entropy is nonadditive: 

𝑆𝑞 𝐴
′ + 𝐴′′ = 𝑆𝑞 𝐴′ + 𝑆𝑞 𝐴′′ + 1 − 𝑞 𝑆𝑞 𝐴′ 𝑆𝑞 𝐴′′  

What about 𝒒 ? 



NLFP 



E.g.: q-dependent, possibly nonlinear, 1D Fokker-Planck (NLFP) equation for 
continuous distribution function 𝑃 𝑥, 𝑡 , where a force 𝐴 = 𝐴 𝑥  is counteracted 
by a diffusion process, represented by a diffusion coefficient 𝐷 

𝐴 = 𝐴 𝑥  

What about 𝒒 ? 

Casas et al. 2012, Wedemann et al. 2016 



                                          is max. when the solution is 

  Steady state solution is just the q-exponential: 

Haubold et al. 2004, Ribeiro et al. 2012, Wedemann et al. 2016 

NFLP for 𝐽 = 0 

What about 𝒒 ? 



 
 
 
 

NFLP for 𝐽 ≠ 0 
 
 
 
 An H-theorem  holds (provided that 𝐴 𝑥  is well-behaved at ∞) 

 
 
 
 Relaxation does occur!  

What about 𝒒 ? 

Casas et al. 2012 



 
 
 
 If 𝐽 ≠ 0 then:                                                                    

 
               Casas et al. 2012 
 
       is the amount (> 0) of      which is produced inside the bulk of the system in a 
time interval 𝑑𝑡 .  
 
                 is the amount of      which is exchanged with the external world in  𝑑𝑡 .  
 
 𝐽 represents the interaction with the external world;  
    in isolated system  𝐽 = 0 (its value is a boundary condition on NLFP) 
 
If a perturbation leaves the latter interaction unaffected then the increment 𝑑𝑆𝑞′ 

of 𝑆𝑞′ in a time interval 𝑑𝑡 is 𝑑𝑆𝑞′ =  𝑑𝑡  ∙ 

 

NFLP for 𝐽 ≠ 0 

What about 𝒒 ? 



Mapping Tsallis onto 
Gibbs 



A monotonically increasing, additive function of 𝑆𝑞 exists even for 𝑞 ≠ 1 !! 

 
 
Tsallis 1988,  
Abe 2001,  
Vives et al. 2002 

These facts have a lot of consequences…  



 𝑆𝑞 = 𝑚𝑎𝑥 if and only if  𝑆𝑞 = 𝑚𝑎𝑥 

 
 
 

 Moreover: LTE, GEC formally unchanged provided that we replace 𝑆𝑞 with 𝑆𝑞 … 

                                                      (mapping of Tsallis’ onto Gibbs’ thermodynamics) 
 
 
 … and relaxation behaves formally the same way regardless of 𝑞, in particular… 
 
 
 

 … the variance of fluctuations of  around a 𝑆𝑞 = 𝑚𝑎𝑥 state is 
𝜕2𝑆𝑞 

𝜕2

−1

… 

 
 

 … which implies (as 
𝑑𝑆𝑞 

𝑑𝑆𝑞
> 0) that the variance around a 𝑆𝑞 = 𝑚𝑎𝑥 state is ∝

𝜕2𝑆𝑞

𝜕2

−1

 

 
 
N.B. variance is always larger for Tsallis than for Gibbs!                                Vives et al. 2002 



The quest for q: 
NLFP …with J  0 



In NLFP?    𝑞 = const.    However, nothing changes if 𝑞 = 𝑞 𝑡    
                                        provided that  𝑑 ln 𝑞 𝑑𝑡 ≫ 𝑑 ln 𝑃 𝑑𝑡  (slow evolution) 
 
 Slow evolution is a succession of relaxed states 

 
 If  𝐽 ≈ 0 (i.e., the  interaction with the external world is weak) then the relaxed state 

at time 𝑡 corresponds just to 𝑆𝑞′=𝑞′ 𝑡  ≈ 𝑚𝑎𝑥  with 𝑃 ≈ 𝑃𝐽 = 0,𝑞 … 

 

 … and the variance of fluctuations of  around a relaxed state is ∝
𝜕2𝑆𝑞′

𝜕2

−1

… 

 

 … which in a time interval 𝑑𝑡 is ∝ 𝑑𝑡 ∙ 
𝜕2        

𝜕2

−1

 

 
 
The larger the variance, the larger the fluctuations of   which the relaxed state is stable 
against   
the larger the variance, the more stable the relaxed state, the larger the fluctuations of 
 which the probability distribution of the relaxed state is stable against 
 
 is arbitrary we may take 𝑑  = 𝑑𝑞′, i.e. we deal with stability against (slow) 
fluctuations of the slope (depending on 𝑞′) of the probability distribution 



The most stable distribution function against fluctuations of 𝑞′: 
𝜕2        

𝜕𝑞′2
= 0  

 

 This corresponds to an extremum of  
𝜕         

𝜕𝑞′
 

 
 This is a minimum, as far as 𝐽 ≈ 0 at least. In the latter case, indeed: 

 

 𝑑𝑆𝑞′ = 𝑑𝑡     𝑑      = 𝑑𝑡𝑑𝑞′
𝑑      

𝑑𝑞′
     is the amount of        produced in the time 

     𝑑𝑡 by the fluctuation 𝑑𝑞′; it is ≥ 0 for 𝑞′ = 1 (Gibbs’ case!) as fluctuations  
     involve irreversible physics and achieves its minimum value 0 at equilibrium  
     (where 𝑑S = 0) of an isolated system (where 𝐽 = 0). 
 
 But GEC  describes relaxation the same way regardless of 𝑞′ and the structure of 

     the relaxed state is modified only slightly for 𝐽 ≈ 0  , hence     
𝑑 

𝑑𝑞′
 

     is still a minimum (even if non-zero), not a maximum! 
 
 

Allowable range for 𝑧 =  𝑞′ − 1 = 1 − 𝑞:   0 ≤ 𝑧 < 1 (𝑧 = 0 is Gibbs) Borland 1998 



If 𝐽 ≈ 0 , Taylor-series development of 𝐽 in powers of 𝑧  lead to the following 

useful formulas, which allow us to compute 
𝑑 

𝑑𝑧
       once 𝐴 𝑥  and 𝐷 are known: 



A rule for finding 𝒒 in our NLFP! 

If NLFP leads to a relaxed state (well-behaved 𝐴 𝑥 ) and 𝐽 ≈ 0 then the 
probability distribution of microstates in the relaxed state which is more stable 
against slow fluctuations of its own slope is the q-exponential with 𝑞 = 1 − 𝑧  

(similar to a power law with exponent 𝑧−1) and 𝑧 such that 
𝑑 

𝑑𝑧
      = min. and that 

0 < 𝑧 < 1. 
 
 
In this case, power-law is stable against larger fluctuations than Boltzmann 
epoxnential, because the variance of the latter is always lower  
 
 
If such 𝑧 does not exist, then if a relaxed state exists then its probability 
distribution is a Boltzmann’s exponential . 
 
 
N.B. Variance of fluctuations around a power-law distribution are always larger. 

BUT… Why we have to depend on 𝑱 ≈ 𝟎 ? ? ? 



The quest for q: 
noisy 1D maps 



Application: 1D, discrete, autonomous map  

𝑄𝑖+1 =  
𝑥 𝑡′ + ∆𝑡′

∆𝑡′
 

𝑄𝑖 = 
𝑥 𝑡′

∆𝑡′
 

The system evolves along a time interval ≫ ∆𝑡′   (𝑖 →
∞) 
 
                                          



Noise? Stochastic equation 

N.B. 𝑧 unknown; noise may be either additive (𝑧 = 0) or multiplicative ; 
 
        𝐴 𝑥  and 𝐷 represent dynamics and noise level respectively; 
 
           > 0  is arbitrary. 

Borland 1998 



The stochastic equation is associated with NLFP (the probability distribution of 
the solution 𝑥 of the stochastic equation is the solution 𝑃 of NLFP): 

    is arbitrary  we choose it in such a way that the approximation 𝐽 ≈ 0 applies  
 we need no more justification of 𝐽 ≈ 0 and our rules apply! 
 
 
 
 
Relaxed solutions of NLFP  the probability distributions for the noise affected 𝑄𝑖  
as 𝑖 → ∞  then… 



A rule for noise-affected maps! 

Let a 1D, discrete, autonomus map 𝑄𝑖+1 = 𝐺 𝑄𝑖  be affected by noise (no matter 
if additive or multiplicative)  and let the 𝑄𝑖’s distribute as 𝑖 → ∞ along a 
probability distribution 𝑃 𝑄𝑖 . Then: 
 
 
 

a) If 𝑧 exists such that 0 < 𝑧 < 1 and 
𝑑 

𝑑𝑧
      = min then 𝑃 𝑄𝑖  is a q-exponential 

with 𝑞 = 1 − 𝑧  (similar to a power law with exponent 𝑧−1) 
 
 
 

b) Otherwise, 𝑃 𝑄𝑖  is a Boltzmann’s exponential 
 
 
 

N.B. Variance of fluctuations around a power-law distribution are always larger. 
N.B. Only info on dynamics (𝐴 𝑥 = 𝐺 𝑥 − 𝑥) and level noise (𝐷) required!!! 



Theory vs. (numerical) exp.  



Example: the map of Sànchez et al. 2007 
 
 
 
Relevant to econophysics for 𝑎 = 0.8, 0 < 𝑟 < 7       (𝑥 ≥ 0is richness, 𝑃 𝑥  its 
distribution). Noise applied to the initial condition (which gets randomized).  

(𝑥 ≥ 0  Boltzmann’s exponential ∝ 𝑒−𝛽𝑥 = Gaussian (random) ∝ 𝑒−𝛽𝑦
2
in 𝑦 ≡ √𝑥) 

 
 
 

Looking (with MATHCAD) for the minima of  
𝑑 

𝑑𝑧
      in the interval 0 < 𝑧 < 1 , 

 
 
 
the easiest way is to look for zeroes of 
 
 
 

which cross the zero line with positive slope; this corresponds to 
𝑑3

𝑑𝑧3
     > 0 

𝑑2

𝑑𝑧2
 



𝐴 𝑢 = 𝐺 𝑢 − 𝑢 

We have utilized the following formulas (power series up to 7-th power of 𝑧) 



If 𝑎 = 0.8, 𝐷 = 0.1 then the looked-for zeroes of                 which cross the zero  
 
line with vertical slope are found:  
 

for 𝑟 = 2 (at 𝑧 = 0.452), corresponding to a power law with exponent 
1

0.452
= 2.21 

 

for 𝑟 = 4 (at 𝑧 = 0.438) , corresponding to a power law with exponent 
1

0.438
= 2.28 

 

for 𝑟 = 6 (at 𝑧 = 0.412)  corresponding to a power law with exponent 
1

0.412
= 2.43  

 
 
 
 
No such zeroes are found for values 𝑟 < 1 of 𝑟, which correspond  
therefore to exponentials. (This makes sense, as Brownian motion  
is retrieved for 𝑟 → 0). 
 
 
 Variance of fluctuations is larger for 𝑟 > 1 than for 𝑟 < 1 

𝑑2

𝑑𝑧2
 





𝑟 

𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 

As 𝑟 grows, the exponent of the power law saturates 



The larger the noise, the larger   
 𝐷, the easier the relaxation to Boltzmann’s distribution 



Comparison with the results of Sànchez et al. 2007 
 
 
 
 
If 𝑟 > 1 : power law for with exponent 2.21   Pareto-like! 
 
 
 
 
If 𝑟 < 1 : random fluctuations (around the 𝑥 = 0  attractor of 𝐺)  
 
 
 
 
Typical amplitude of fluctuations is much larger for 𝑟 > 1 than for 𝑟 < 1. 



From Sànchez et al. 2007 
For 𝑖 → ∞, fluctuations around mean value are much larger when 𝑟 > 1  



From Sànchez et al. 2007 

𝑃 𝑥  for 𝑖 → ∞ ; −
𝑑 ln 𝑃

𝑑𝑥
= 2.21 



Conclusions 



Conclusions - I 

Gibbs’ thermodynamics describes the probability distribution of microstates in 
relaxed states, their stability against fluctuations and the process of relaxation with 
the help of Boltzmann’s exponentials, Einstein’s formula and Glansdorff et al.’s 
general evolution criterion (GEC) respectively. 
 
 
Tsallis’ thermodynamics describes the probability distribution of microstates in 
relaxed states with the help of 𝑞-exponentials ( power laws). Non-additivity 
prevents it from going further. Moreover, 𝑞 is unknown, and is usually postulated - or 
obtained via lengthy numerical solution of the equations of motion. 
 
 
Mapping of Tsallis’ entropy onto an additive quantity with the same concavity allows 
generalization of both Einstein- and GEC-based conclusions to 𝑞 ≠ 1  
 
 
Thus, relaxed states (if any exist) have to enjoy the same properties regardless of 𝑞 – 
and the same is true for the relaxation processes leading to such states. 



Conclusions - II 

If a relaxed state exists, then 𝑞 ≠ 1 Einstein’s rule and GEC allow us to identify the 
most stable probability distribution of microstates in a relaxed state (i.e., the 
probability distribution which the fluctuations of the largest amplitude relax to) as 

the 𝑞-exponential whose 𝑞 = 1 − 𝑧 ∈ 0,1  minimizes 
𝑑 

𝑑𝑧
    , where        is the 

amount of Tsallis’ entropy produced per unit time in the bulk of the relaxed system.  
 
 
If no such 𝑞 exists, then the most stable probability distribution of microstates in the 
relaxed state (if any exists) is a Boltzmann exponential.  
 
 
Explicit expressions  for      and its derivatives are provided for in the particular case of 
a system described by a 1D, nonlinear Fokker-Planck (NLFP) equation and weakly 
interacting with the external world. These expressions require just the knowledge of 
the diffusion coefficient and of the driving force acting in the NLFP. 



Conclusions - III 

We associate our NLFP with the stochastic equation obtained in the continuous limit from 
a 1D, autonomous map affected by noise. Relaxed solutions of NLFP (if any exists)  the 
asymptotic (𝑖 → ∞) probability distributions 𝑃 𝑄𝑖  (if any exists) for the outcome 𝑄𝑖  of 
the noise-affected map. Once the level of noise and the map dynamics are known, we 
may unambiguously obtain our NLFP and compute its diffusion coefficient and its driving 
force as well as        and its derivatives. 
 
 
Regardless of the nature (additive vs. multiplicative) of the noise, if 𝑃 𝑄𝑖  exists then: 
 

a) If z exists such that 0 < z < 1 and 
d 

dz
       = min then P Qi  is a q-exponential with 

q = 1 − z  (similar to a power law with exponent z−1); 
b) Otherwise, P Qi  is a Boltzmann’s exponential. 

 
In all cases, variance of fluctuations around a power-law distribution are always larger 
than around a Boltzmann’s exponential.  

 
 
Agreement with Pareto-like simulations of Sànchez et al. 2007 . No eqs. of motion solved! 



From 1D to 2D maps and 
beyond… ? 


