
Pattern recognition in nuclear fusion data by
means of geometric methods in probabilistic
spaces

Geert Verdoolaege
Department of Applied Physics, Ghent University, Ghent, Belgium

Laboratory for Plasma Physics, Royal Military Academy (LPP–ERM/KMS), Brussels, Belgium

ECEA 2017, November 21 – December 1, 2017



1 Stochastic uncertainty in fusion plasmas

2 Pattern recognition in probabilistic spaces

3 Geodesic least squares regression

4 Application in fusion science: edge-localized plasma instabilities

5 Application in astronomy: Tully-Fisher scaling

6 Conclusion

2

Overview



1 Stochastic uncertainty in fusion plasmas

2 Pattern recognition in probabilistic spaces

3 Geodesic least squares regression

4 Application in fusion science: edge-localized plasma instabilities

5 Application in astronomy: Tully-Fisher scaling

6 Conclusion

3

Overview



‘Star on earth’
Clean, safe, inexhaustible energy source
Magnetic confinement fusion: tokamak, stellarator, . . .
Confine hot hydrogen isotope plasma with magnetic fields
ITER: next-generation international tokamak
Complex physical system, turbulent transport
Difficult to probe→ uncertainty in measurements and models
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Fusion energy



Sources of statistical uncertainty:
Fluctuation of system properties
Measurement noise

Plasma turbulence (PPPL) Edge-localized modes (MAST)

Confinement time vs. density (JET)
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Uncertainty in fusion plasmas
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Patterns↔ distances
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Difference/distance between points
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Zooming in...
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Mahalanobis distance



Family of probability distributions→ differentiable manifold

Parameters = coordinates

Metric tensor: Fisher information matrix

Parametric probability model: p (x|θ) =⇒

gµν (θ) = −E

[
∂2

∂θµ∂θν
ln p (x|θ)

]
, µ, ν = 1, . . . , m

θ = m-dimensional parameter vector

Line element:
ds2 = gµνdθµdθν

Minimum-length curve: geodesic

Rao geodesic distance (GD)
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Information geometry



Pattern recognition:
Classification, clustering
Regression analysis
Dimensionality reduction, visualization

Observation/prediction (structureless number)
→ distribution (structured object)

More information, more flexibility
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Pattern recognition in probabilistic spaces



PDF:

p(x|µ, σ) =
1√
2πσ

exp
[
− (x− µ)2

2σ2

]
Line element:

ds2 =
dµ2

σ2 + 2
dσ2

σ2

Hyperbolic geometry: Poincaré half-plane,
Poincaré disk, Klein disk, . . .
Analytic geodesic distance

https://www.youtube.com/watch?v=i9IUzNxeH4o
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The univariate Gaussian manifold

https://www.youtube.com/watch?v=i9IUzNxeH4o


Original Compressed
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The pseudosphere (tractroid)
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Geodesics on the Gaussian manifold



Plasma energy confinement time w.r.t. global plasma parameters

Euclidean

Geodesic
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Data visualization with uncertainty



1 Stochastic uncertainty in fusion plasmas

2 Pattern recognition in probabilistic spaces

3 Geodesic least squares regression

4 Application in fusion science: edge-localized plasma instabilities

5 Application in astronomy: Tully-Fisher scaling

6 Conclusion

16

Overview



Data uncertainty: measurement error, fluctuations, . . .

Model uncertainty: missing variables, linear vs. nonlinear, Gaussian vs.
non-Gaussian, . . .

Heterogeneous data and error bars

Uncertainty on response (y) and predictor (xj) variables

Atypical observations (outliers)

Near-collinearity of predictor variables

Data transformations, e.g.

ln(y) = ln(β0) + β1 ln(x1) + β2 ln(x2) + . . . + βp ln(xp)
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Challenges in regression analysis



Workhorse: ordinary least squares (OLS)

Maximum likelihood (ML)
/ maximum a posteriori (MAP):

p(yi|xi, θ) =
1√
2πσ

exp

−1
2

(
yi − µi

σ

)2


µi = fi(xi, θ)
e.g.
= β0 + β1xi

Need flexible and robust regression

Parameter estimation→ distance
minimization:

Expected↔Measured

Michigan, circa 1890s.
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Least squares and maximum a posteriori



Minimum distance estimation (Wolfowitz, 1952):

Which distribution does the model predict?

vs.

Which distribution do you observe?

Gaussian case: different means and standard deviations

Hellinger divergence (Beran, 1977)

Empirical distribution: kernel density estimate
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The minimum distance approach
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Modeled and observed distribution
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Example: fluid turbulence



1√
2π
(

σ2
y + ∑m

j=1 βj
2
σ2

x,j

) exp

−
1
2

[
y−

(
β0 + ∑m

j=1 βj xij

)]2

σ2
y + ∑m

j=1 βj
2σ2

x,j



1√
2π σobs

exp

[
−1

2
(y− yi)

2

σobs
2

]
Rao GDModeled distribution

Observed distribution

σ2
mod

Model-based approach: regression on probabilistic manifold
To be estimated: σobs, β0, β1, . . . , βm
iid data: minimize sum of squared GDs

=⇒ geodesic least squares (GLS) regression
If σmod = σobs →Mahalanobis distance

G. Verdoolaege et al., Entropy 17, 4602, 2015
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Geodesic least squares
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Repetitive instabilities in plasma edge
Magnetohydrodynamic origin

MAST, Culham Centre for Fusion Energy, UK 24

Edge-localized modes (ELMs)
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Analogy 1: Solar flares
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Analogy 2: Cooking pot



Confinement loss

Potential damaging effects

Impurity outflux

→ ELM control/mitigation

Energy ∝ (frequency)−1
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Importance of ELMs



32 recent JET discharges
Waiting time: time before ELM burst
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Data extraction: waiting times



Energy carried from the plasma by an ELM
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Data extraction: energies
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Average waiting times and energies



Standard deviation /
√

n→ error bars
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Error bars on averages



EELM = β0 + β1∆tELM, σE,obs ∝ µE,obs
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Regression on averages
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Regression results on pseudosphere



Multidimensional scaling:
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Projected regression results



Average

Method β0 (MJ) β1 (MJ/s)

OLS -0.050 5.7
GLS -0.021 4.6

Individual

Method β0 (MJ) β1 (MJ/s)

OLS 0.024 3.2
GLS -0.022 4.2
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Average vs. collective trend
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Simple, tight relation for disk galaxies:

Mb = β0Vβ1
f

{
Mb = total (stellar + gaseous) baryonic mass (M�)

Vf = rotational velocity (km s−1)

Various purposes:
Distance indicator
Constraints on galaxy formation models
Test for alternatives to ΛCDM cosmological model (slope and scatter)
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Baryonic Tully-Fisher Relation (BTFR)



47 gas-rich galaxies (McGaugh, Astron. J. 143, 40, 2012)

Loglinear (σobs,i ≡ sobs) and nonlinear (σobs,i = robs Mb)

Benchmarking:

Ordinary least squares (OLS)

Bayesian: errors in all variables, marginalized standard deviations (Bayes)

Geodesic least squares (GLS)

Kullback-Leibler least squares (KLS)
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Experiments
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Loglinear regression
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Nonlinear regression
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Parameter distributions



rMb ≈ 38%, robs ≈ 63%
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GLS uncertainty estimates
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Interpretation on pseudosphere
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Probabilistic modeling of stochastic system properties

Information geometry: distance measure, geometrical intuition

Pattern recognition in probabilistic spaces

More information, more flexibility

Geodesic least squares regression: flexible and robust

Easy to use, fast optimization
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Conclusions
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