

Pattern recognition in nuclear fusion data by means of geometric methods in probabilistic spaces

Geert Verdoolaege

Department of Applied Physics, Ghent University, Ghent, Belgium Laboratory for Plasma Physics, Royal Military Academy (LPP-ERM/KMS), Brussels, Belgium

ECEA 2017, November 21 – December 1, 2017

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Eurotom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Overview

- Stochastic uncertainty in fusion plasmas
- 2 Pattern recognition in probabilistic spaces
- 3 Geodesic least squares regression
- Application in fusion science: edge-localized plasma instabilities
- 5 Application in astronomy: Tully-Fisher scaling
 - 6 Conclusion

Overview

Stochastic uncertainty in fusion plasmas

- 2 Pattern recognition in probabilistic spaces
- 3 Geodesic least squares regression
- Application in fusion science: edge-localized plasma instabilities
- 5 Application in astronomy: Tully-Fisher scaling
- 6 Conclusion

Fusion energy

- 'Star on earth'
- Clean, safe, inexhaustible energy source
- Magnetic confinement fusion: tokamak, stellarator, ...
- Confine hot hydrogen isotope plasma with magnetic fields
- ITER: next-generation international tokamak
- Complex physical system, turbulent transport
- $\bullet~$ Difficult to probe \rightarrow uncertainty in measurements and models

Uncertainty in fusion plasmas

- Sources of statistical uncertainty:
 - Fluctuation of system properties
 - Measurement noise

Plasma turbulence (PPPL)

Overview

Stochastic uncertainty in fusion plasmas

2 Pattern recognition in probabilistic spaces

- 3 Geodesic least squares regression
- Application in fusion science: edge-localized plasma instabilities
- 5 Application in astronomy: Tully-Fisher scaling
- 6 Conclusion

Difference/distance between points

 $Patterns \leftrightarrow distances$

Zooming in...

Mahalanobis distance

Information geometry

- Family of probability distributions \rightarrow differentiable manifold
- Parameters = coordinates
- Metric tensor: *Fisher information* matrix

Parametric probability model: $p(\mathbf{x}|\boldsymbol{\theta}) \Longrightarrow$ $g_{\mu\nu}(\boldsymbol{\theta}) = -\mathbb{E}\left[\frac{\partial^2}{\partial\theta^{\mu}\partial\theta^{\nu}}\ln p(\mathbf{x}|\boldsymbol{\theta})\right], \quad \mu, \nu = 1, \dots, m$

 θ = *m*-dimensional parameter vector

• Line element:

$$\mathrm{d}s^2 = g_{\mu\nu}\mathrm{d}\theta^\mu\mathrm{d}\theta^\nu$$

- Minimum-length curve: *geodesic*
- Rao geodesic distance (GD)

Pattern recognition in probabilistic spaces

• Pattern recognition:

- Classification, clustering
- Regression analysis
- Dimensionality reduction, visualization
- Observation/prediction (structureless number)
 - \rightarrow distribution (structured object)
- More information, more flexibility

The univariate Gaussian manifold

• PDF:

$$p(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

• Line element:

$$\mathrm{d}s^2 = \frac{\mathrm{d}\mu^2}{\sigma^2} + 2\frac{\mathrm{d}\sigma^2}{\sigma^2}$$

- Hyperbolic geometry: Poincaré half-plane, Poincaré disk, Klein disk, ...
- Analytic geodesic distance

https://www.youtube.com/watch?v=i9IUzNxeH4o

The pseudosphere (tractroid)

Geodesics on the Gaussian manifold

Data visualization with uncertainty

Plasma energy confinement time w.r.t. global plasma parameters

Euclidean

Geodesic

Overview

- Stochastic uncertainty in fusion plasmas
- 2 Pattern recognition in probabilistic spaces
- 3 Geodesic least squares regression
 - Application in fusion science: edge-localized plasma instabilities
 - 5 Application in astronomy: Tully-Fisher scaling
 - 6 Conclusion

Challenges in regression analysis

- Data uncertainty: measurement error, fluctuations, ...
- Model uncertainty: missing variables, linear vs. nonlinear, Gaussian vs. non-Gaussian, ...
- Heterogeneous data and error bars
- Uncertainty on response (*y*) and predictor (*x_j*) variables
- Atypical observations (outliers)
- Near-collinearity of predictor variables
- Data transformations, e.g.

Least squares and maximum a posteriori

- Workhorse: ordinary least squares (OLS)
- Maximum likelihood (ML) / maximum *a posteriori* (MAP):

$$p(y_i|x_i, \boldsymbol{\theta}) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{1}{2}\left(\frac{y_i - \mu_i}{\sigma}\right)^2\right]$$
$$\mu_i = f_i(x_i, \boldsymbol{\theta}) \stackrel{\text{e.g.}}{=} \beta_0 + \beta_1 x_i$$

- Need *flexible* and *robust* regression
- Parameter estimation → distance minimization:

Expected \leftrightarrow Measured

Michigan, circa 1890s.

The minimum distance approach

• *Minimum distance estimation* (Wolfowitz, 1952):

Which distribution does the model predict?

vs.

Which distribution do you observe?

- Gaussian case: different means and standard deviations
- Hellinger divergence (Beran, 1977)
- Empirical distribution: kernel density estimate

Modeled and observed distribution

Example: fluid turbulence

Geodesic least squares

- Model-based approach: regression on probabilistic manifold
- To be estimated: σ_{obs} , β_0 , β_1 , ..., β_m
- iid data: minimize sum of squared GDs

⇒ *geodesic least squares* (*GLS*) regression

• If $\sigma_{mod} = \sigma_{obs} \rightarrow$ Mahalanobis distance

Overview

- 1 Stochastic uncertainty in fusion plasmas
- 2 Pattern recognition in probabilistic spaces
- 3 Geodesic least squares regression
- Application in fusion science: edge-localized plasma instabilities
 - 5 Application in astronomy: Tully-Fisher scaling
 - 6 Conclusion

Edge-localized modes (ELMs)

- Repetitive instabilities in plasma edge
- Magnetohydrodynamic origin

MAST, Culham Centre for Fusion Energy, UK

Analogy 1: Solar flares

Analogy 2: Cooking pot

- Confinement loss
- Potential damaging effects
- Impurity outflux
- $\bullet \rightarrow ELM \text{ control/mitigation}$
- Energy \propto (frequency)⁻¹

Data extraction: waiting times

- 32 recent JET discharges
- Waiting time: time before ELM burst

Data extraction: energies

• Energy carried from the plasma by an ELM

Average waiting times and energies

Error bars on averages

• Standard deviation / $\sqrt{n} \rightarrow \text{error bars}$

Regression on averages

Regression results on pseudosphere

Projected regression results

Multidimensional scaling:

Overview

- 1 Stochastic uncertainty in fusion plasmas
- 2 Pattern recognition in probabilistic spaces
- 3 Geodesic least squares regression
- Application in fusion science: edge-localized plasma instabilities
- 5 Application in astronomy: Tully-Fisher scaling
 - Conclusion

Baryonic Tully-Fisher Relation (BTFR)

• Simple, tight relation for disk galaxies:

$$M_b = \beta_0 V_f^{\beta_1}$$

$$\begin{cases}
M_b = \text{total (stellar + gaseous) baryonic mass } (M_{\odot}) \\
V_f = \text{rotational velocity } (\text{km s}^{-1})
\end{cases}$$

- Various purposes:
 - Distance indicator
 - Constraints on galaxy formation models
 - Test for alternatives to ACDM cosmological model (slope and scatter)

- 47 gas-rich galaxies (McGaugh, Astron. J. 143, 40, 2012)
- Loglinear ($\sigma_{obs,i} \equiv s_{obs}$) and nonlinear ($\sigma_{obs,i} = r_{obs} M_b$)
- Benchmarking:
 - Ordinary least squares (OLS)
 - Bayesian: errors in all variables, marginalized standard deviations (Bayes)
 - Geodesic least squares (GLS)
 - Kullback-Leibler least squares (KLS)

Loglinear regression

Nonlinear regression

Parameter distributions

GLS uncertainty estimates

 $r_{M_b} \approx 38\%$, $r_{\rm obs} \approx 63\%$

Interpretation on pseudosphere

Overview

- 1 Stochastic uncertainty in fusion plasmas
- 2 Pattern recognition in probabilistic spaces
- 3 Geodesic least squares regression
- Application in fusion science: edge-localized plasma instabilities
- 5 Application in astronomy: Tully-Fisher scaling
- 6 Conclusion

- Probabilistic modeling of stochastic system properties
- Information geometry: distance measure, geometrical intuition
- Pattern recognition in probabilistic spaces
- More information, more flexibility
- Geodesic least squares regression: *flexible* and *robust*
- *Easy* to use, *fast* optimization