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Overview

@ Stochastic uncertainty in fusion plasmas
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Fusion energy
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@ ’‘Star on earth’

@ Clean, safe, inexhaustible energy source

@ Magnetic confinement fusion: tokamalk, stellarator, ...

@ Confine hot hydrogen isotope plasma with magnetic fields

@ ITER: next-generation international tokamak

@ Complex physical system, turbulent transport

o Difficult to probe — uncertainty in measurements and models




&
=

(®)

Uncertainty in fusion plasmas
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@ Sources of statistical uncertainty:
o Fluctuation of system properties
e Measurement noise
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Overview

© Pattern recognition in probabilistic spaces
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Difference/distance between points

Patterns < distances
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Zooming in...
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Mahalanobis distance
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Information geometry
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e Family of probability distributions — differentiable manifold
@ Parameters = coordinates

@ Metric tensor: Fisher information matrix

Parametric probability model: p (x|6) =
2

)
Suv (0) = — FYTEIT Inp (x|6)|, wmwv=1,...,m
0 = m-dimensional parameter vector

@ Line element:
ds® = g, d6"d”

@ Minimum-length curve: geodesic

@ Rao geodesic distance (GD)



Pattern recognition in probabilistic spaces

@ Pattern recognition:
o Classification, clustering
o Regression analysis
e Dimensionality reduction, visualization
@ Observation/prediction (structureless number)
— distribution (structured object)

@ More information, more flexibility
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The univariate Gaussian manifold
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o PDF:

1 2
plali ) = exp | - C 1|

@ Line element:
2 2
ds? = diz + ZdLZ
o o

@ Hyperbolic geometry: Poincaré half-plane,
Poincaré disk, Klein disk, ...

@ Analytic geodesic distance

https://www.youtube.com/watch?v=19IUzNxeH4o


https://www.youtube.com/watch?v=i9IUzNxeH4o

The pseudosphere (tractroid)

Original




Geodesics on the Gaussian manifold @)
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Data visualization with uncertainty @\;
Plasma energy confinement time w.r.t. global plasma parameters
Euclidean

Geodesic
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© Geodesic least squares regression
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Challenges in regression analysis
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@ Data uncertainty: measurement error, fluctuations, ...

@ Model uncertainty: missing variables, linear vs. nonlinear, Gaussian vs.
non-Gaussian, ...

@ Heterogeneous data and error bars

@ Uncertainty on response (y) and predictor (x;) variables
@ Atypical observations (outliers)

@ Near-collinearity of predictor variables

@ Data transformations, e.g.

In(y) = In(Bo) + B11In(x1) + B2In(x2) + ... + BpIn(xy)
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Least squares and maximum a posteriori
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@ Workhorse: ordinary least squares (OLS)

@ Maximum likelihood (ML)
/ maximum a posteriori (MAP):

2
1 1/( Yi — M
p(yilx;, 8) = ﬁexp ) <0>

Hi = fi(xi,0) < Bo + Brx;

@ Need flexible and robust regression ’

@ Parameter estimation — distance I
minimization: -

Expected <> Measured ’
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The minimum distance approach
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@ Minimum distance estimation (Wolfowitz, 1952):
Which distribution does the model predict?
Vs.
Which distribution do you observe?
@ Gaussian case: different means and standard deviations

@ Hellinger divergence (Beran, 1977)

e Empirical distribution: kernel density estimate



Modeled and observed distribution

20

“Measurement site”
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Example: fluid turbulence
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Geodesic least squares
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L exp{ 2 v (B 5 )]
\/27r (Uyz +Y% B 205,].)
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Modeled distribution _/ ¢ foep .

Observed distribution
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@ Model-based approach: regression on probabilistic manifold
@ To be estimated: oy, Bo, B1,-- -, Pm
@ iid data: minimize sum of squared GDs
= geodesic least squares (GLS) regression
o If 004 = 0ops — Mahalanobis distance

G. Verdoolaege et al., Entropy 17, 4602, 2015



Overview

© Application in fusion science: edge-localized plasma instabilities
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Edge-localized modes (ELMs)
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@ Repetitive instabilities in plasma edge
@ Magnetohydrodynamic origin

MAST, Culham Centre for Fusion Energy, UK



Analogy 1: Solar flares




Analogy 2: Cooking pot
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Importance of ELMs Q)
10x10%
o Confinement loss #83633
3 In. Div. Be |l
o Potential damaging effects
6 Slow
transport

Impurity outflux event

Ph/scm?sr
E-Y

@ — ELM control/mitigation

N

Energy « (frequency) ! 4892 4896  48.96
Time (s)



Data extraction: waiting times (@)
=7
@ 32 recent JET discharges
@ Waiting time: time before ELM burst
16
410 #76479
ELM;
3.5 ELM;
ELM;
3 -
%250 i
NE . For each ELM i ~in.Div. D(x
Q 2r " . _ _ @ Detected ELM
§ Waiting time = tz- t1— AtELMi A ELM start
1.5+ L _ ELM end
A ELM duration =t-t=7_ . v en
1
0.5

| | ] | ]
61.18 61.20 tr t3 §1.22 61.24
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Data extraction: energies

61.28

#76479
In. Div. D
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@ Energy carried from the plasma by an ELM

61.12



Energy (MJ)

Average waiting times and energies @)
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Energy (MJ)

rror bars on averages

@ Standard deviation / \/n — error bars
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Regression on averages Q)
Eerm = Po + B1AteLM,  OF,obs & ME,obs
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Regression results on pseudosphere

Bl Data
Bl Modeled
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Projected regression results

(C

Multidimensional scaling:

—Modeled
—QObserved
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Average vs. collective trend Q)
Average Individual
Method By M]) B1 (M]/s) Method By (M]) B1 (M]/s)
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08 t T T T
—OLS av.
—MAP av.
06 —agLsav. 1
S |---olsind.| .
S 041--MAPind.[. - 0 e : 1
> ---GLSind.|. .7 . e e g -l
9) : C . == ~ooIIlo--
S 02F |
L
0 = i
_02 1 Il L 1 1
0 20 40 60 80 100 120

Waiting time (ms)



Overview

© Application in astronomy: Tully-Fisher scaling
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Baryonic Tully-Fisher Relation (BTFR) ©
@ Simple, tight relation for disk galaxies:
8 M, = total (stellar 4 gaseous) baryonic mass (M)
M, = ﬁOVf . . -1
V¢ = rotational velocity (kms™")

@ Various purposes:
e Distance indicator
o Constraints on galaxy formation models
o Test for alternatives to ACDM cosmological model (slope and scatter)
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Experiments
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@ 47 gas-rich galaxies (McGaugh, Astron. J. 143, 40, 2012)
@ Loglinear (0ops; = Sobs) and nonlinear (0opg i = 7obs Mp)
@ Benchmarking;:

o Ordinary least squares (OLS)
e Bayesian: errors in all variables, marginalized standard deviations (Bayes)
@ Geodesic least squares (GLS)

e Kullback-Leibler least squares (KLS)



Loglinear regression
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Nonlinear regression
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Parameter distributions

Probability density

Probability density
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GLS uncertainty estimates Q)
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Interpretation on pseudosphere ©
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Conclusions

(

@ Probabilistic modeling of stochastic system properties

@ Information geometry: distance measure, geometrical intuition
@ Pattern recognition in probabilistic spaces

@ More information, more flexibility

@ Geodesic least squares regression: flexible and robust

@ Easy to use, fast optimization
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