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Abstract: Dynamic random network models are presented as a mathematical framework for
modelling and analyzing the time evolution of complex networks. Such framework allows the
time analysis of several network characterizing features such as link density, clustering coefficient,
degree distribution, as well as entropy-based complexity measures, providing new insight on the
evolution of random networks. Some simple dynamic models are analyzed with the aim to provide
several basic reference evolution behaviors. Simulation examples are discussed to illustrate the
applicability of the proposed framework.
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1. Introduction

Many complex systems can be modelled by using some network structure in the model
construction. These models may be dynamical, meaning that the values of some (state) variables do
change with time, and, depending on the nature of such variables, we can have different types of
models. The first type corresponds to dynamic graphs which follow evolution laws defined explicitly
on the network [1,2]; the second type gathers dynamical systems where the state variables are defined
on a network [3]; finally, the third type refers to co-evolution models which combine evolving networks
and dynamical systems. In the first and third type the underlying network structure changes with
time, defining a time-varying or evolving network [4]. The characterization of some basic models of
evolving networks is the main objective of the present work.

2. Characterization of Network Sequences via Standard Features

Following [4], discrete-time network evolution along time can be generally defined by a random
sequence or trajectory {Gt}t=0,1,... where each Gt can take values g from G, being G the set of all
possible networks. The analysis of {Gt}t=0,1,... can be framed by considering it as a stochastic process,
whose full characterization may be very complex. In the following we present some standard features
which help for a partial characterization of such stochastic process.

2.1. Time Evolution of Network Features

In some cases we may be interested in the evolution of some quantifiable properties or features, f,
of the network, defined as follows (see [5] for details):

f : G −→ Rl , (1)

g −→ f = f (g), (2)

where f (g) is the function that computes such quantifiable property (number of links, number of
triangles, connectivity, degree of nodes, entropy of degree distribution, etc.) in graph g.
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Note that when G is endowed with a probability space, then, under some regularity assumptions
on f , this function defines a random vector. Therefore the sequence f (Gt) ∈ Rl defines a vector
stochastic process which can be analyzed using standard stochastic process techniques. In the following
analysis we will focus on several of these properties such as the number of links, number of triangles,
degree distribution entropy, etc. Since for these cases l = 1, the study will boil down to the analysis of
scalar stochastic processes. A basic analysis would estimate, for instance, the deterministic sequence of
expected values E[ f (Gt)].

In the following section we focus on different entropy measures which can also be employed for
characterizing the stochastic process {Gt}t=0,1,....

3. Entropy Measures for Stochastic Processes

The stochastic process {Gt}t=0,1,... is an indexed sequence of random variables, which can be
completely characterized until time instant t = N by its joint probability distribution:

P(G0, G1, ..., GN) (3)

This joint distribution may be quite complex to study and, therefore we may acquiesce in
characterizing part of it. For instance, if we consider Gi for a fixed time t = i, this snapshot of the
process, also called a cross-sectional variable, can be represented by a “static” model such as the ones
studied in [5], fully characterized by the marginal distribution of gi. Accordingly, when considering
entropy measures for characterizing a stochastic process, different distributions associated with such
process can be considered, as developed below.

3.1. Cross-Sectional Entropy and Entropy of Network Features

The simplest approach focuses on the entropy analysis of cross sectional variables Gi.
Hence, one can define the cross-sectional entropy of index i, H(Gi), of a stochastic process as the
entropy of the i-th variable Gi of the process.

H(Gi) = − ∑
g∈G

p(Gi = g) log p(Gi = g) (4)

When considering a network feature f , the entropy of the associated random variable Fi = f (Gi)

satisfies the condition
H(Gi) = H(Gi/Fi) + H(Fi) (5)

and therefore
H(Fi) = H( f (Gi)) ≤ H(Gi) (6)

where the equality holds only if f is an injection.
Note that H(Gi) in Equation (4) is not to be confused with the feature mentioned in Section 2.1

called degree distribution entropy, associated with a concrete sample of Gi. For a more detailed
explanation of degree distributions in static models see [5].

The computation of H(Gi), when performed for every i ∈ {0, 1, . . . , }, would lead to a deterministic
time series {Ht}t=0,1,... as an alternative partial characterization of the stochastic process {Gt}t=0,1,....

3.2. Trajectory Entropy

Furthermore, one can study the entropy of a whole time period evolution of the process, seen as a
sequence of T + 1 variables. We define the trajectory entropy (HT

0 ) of a T + 1-length time period of a
stochastic process, as the entropy of the joint probability P(G0, G2, ..., GT).

HT
0 = H(G0, . . . , GT) = − ∑

GT+1

p(g0, g1, ...gT) log p(g0, g2, ...gT) (7)
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If all Gi are independent variables, then:

HT
0 =

T

∑
i=0

H(Gi) (8)

Note that, in general, as T increases, HT
0 may increase unbounded.

3.3. Normalized Asymptotic Entropy

Finally, one may want to characterize the entropy rate as a normalized entropy measure
independent of T, which globally characterizes the asymptotic behavior of the stochastic process.

HR = lim
T→∞

1
T + 1

HT
0 (9)

Or, equivalently,
HR = lim

T→∞
H(GT | GT−1, GT−2, ..., G1, G0) (10)

After presenting these measures, the next Section starts considering some basic evolution models.

4. Evolution Models with Fixed Number of Nodes. Evolution of Number of Links

Let us consider GV the set of all networks (or graphs) gi = (V, Ei) having a fixed set of nodes
V = {v1, . . . , vn}, with |V| = n; each gi ∈ G is then characterized by its corresponding set of links
Ei ⊂ E with E being determined by V as the set of all pairs of nodes (|E| = (n

2) = m).
In this framework, any evolution process {Gt}t=0,1,... is characterized by the sequence of the

corresponding {Et}t=0,1,.... In addition, since gi ∈ GV can be represented via its corresponding binary
adjacency matrix A(gi) ∈ Rn ×Rn, the evolution process can also be characterized as a sequence of
adjacency matrices {A(gt)}t=0,1,... = {At}t=0,1,....

4.1. Evolution of the Number of Links

In general, a complete characterization of {Gt}t=0,1,... will be very cumbersome. Alternatively,we
can partially characterize such process by considering

f : G −→ {0, 1, . . . m} (11)

gi −→ f (gi) = |Ei| = ‖Ai‖1 = ni (12)

where f is the function that computes the number of links in the network. We can partition the set
GV into equivalence classes Ck, k = 0, . . . m so that each class Ck gathers all graphs containing k
links: Ck = {gi ∈ G : f (gi) = k}. Then, we can define a stochastic process {Nt}t=0,1... with each
Nt ∈ {0, 1, . . . , m}which characterizes the transition between classes, and whose state space represents
such equivalence classes (hence, we identify Ck with state k).

In general, for a given instant of time i, based on Equation (5) we will have that the cross-sectional
entropy of Gi and the entropy of Ni will satisfy

H(Gi) = H(Gi/Ni) + H(Ni) (13)

and this relationship will help to characterize Gi via the analysis of Ni. Therefore the following
proposed models will be partially characterized by analyzing the associated stochastic process,
Nt ∈ {0, 1, . . . , m}, for the evolution of the number of links.
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4.2. A Simple Evolution Model

We define a simple network evolution process which may serve as a reference baseline for
comparison purposes. Given gt (equivalently, Et or At), the next time step network gt+1 is generated
by randomly selecting a pair of nodes (vi, vj) ∈ E so that if there exists a link between them
(i.e., (vi, vj) ∈ Et), such link is removed (Et+1 = Et \ {(vi, vj)}) and, if there is no link between
the nodes (i.e., (vi, vj) 6∈ Et), then it is created (Et+1 = Et ∪ {(vi, vj)}). Note that if we consider the
adjacency matrix representation At, at each stage of time, an element of the matrix At is randomly
chosen so that its value is changed (from 0 to 1 or vice versa) to derive At+1.

Note that the evolution law if determined by the number of links of gt. Therefore, as mentioned
above, we will start the analysis of this evolution model by characterizing the time evolution of the
number of links. The corresponding Nt ∈ {0, 1, . . . , m} satisfies:

P(Nt+1=1/Nt=0) = 1, (14)

P(Nt+1=m− 1/Nt=m) = 1, (15)

and for i ∈ {1, . . . , m− 1}:

P(Nt+1=j/Nt=i) =


0, if j = i or |j− i| > 1,
i
m , if j = i− 1,
m−i

m , if j = i + 1.
(16)

This process is a Markov chain with the following matrix of transition probabilities:

P =



0 1
m 0 · · · 0 0 0

1 0 2
m · · · 0 0 0

0 m−1
m 0 · · · 0 0 0

0 0 m−2
m · · · 0 0 0

...
...

...
. . .

...
...

...
0 0 0 · · · m−2

m 0 0
0 0 0 · · · 0 m−1

m 0
0 0 0 · · · 2

m 0 1
0 0 0 · · · 0 1

m 0


(17)

which is known as the Ehrenfest model [6], and which can be similarly interpreted as representing
an urn with white and black balls, where we randomly select a ball and change it by another ball
with different color, hence representing a sort of discrete-time birth-death Markov process [7] but with
finite number of states (two boundary conditions). Many discrete distributions have been obtained by
studying urn models and Markov processes [8–10]. Note that these models can be seen as a reference
baseline since they do not exploit the network structure properties (i.e., the relative location of white
balls and black balls).

The left stochastic, tri-diagonal, irreducible matrix P of Equation (17) has period 2, but it has
a unique eigenvector associated with eigenvalue λ = 1. This eigenvector defines the stationary
distribution of the process, denoted by Ns, and it can be easily proved that such distribution is binomial:

P(gs ∈ Ck) = P(Ns = k) =
(

m
k

)(
1
2

)m
, (18)

so that taking a snapshot of the process for large t is equivalent to generating a sample from the Gilbert
model with p = 1

2 or, equivalently, the uniform model with maximum entropy (see [5] for details).
Note that given a number of links Ns = k, the distribution of Gi/Ns = k) is uniform (following a
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Erdős-Rényi model [5]), each link having probability 1
|Ck |

= 1
(m

k )
. Hence, considering Equation (18),

the entropy expression provided in Equation (13) becomes

H(Gi) = H(Ns) + H(Gi/Ns) = −∑
k

p(k) log p(k)−∑
k

p(k) log
1
(m

k )
(19)

= −∑
k

p(k) log
p(k)
(m

k )
= m · log 2 (20)

Concerning the entropy of Nt, it is known that Ehrenfest model cross-sectional (relative) entropy
at time t, defined in terms of the Kullback-Leibler divergence between the distribution and the steady
state equilibrium distribution

Hrel(t) = −DKL(P(t)||Ps) = −
n

∑
k=0

P(Nt = k) log
P(Nt = k)
P(Ns = k)

is non-decreasing in time as approaches the maximum value zero, upon the so called H-Theorem [11].

4.3. Extensions of the Model for Asymmetric Evolution

One can extend the symmetric model provided in Equation (17) with the aim of considering cases
in which the network may have an uneven tendency to increase or decrease in the number of edges.

Let us consider the following transition behavior from gt to gt+1: we start selecting a pairs of
nodes in network gt; if the selected pair already has an associated link, such link is removed with
probability pr, whereas if such pair does not have an associated link, a link is added between such pair
of nodes with probability pa. If no change (removal or addition) happens, the process is repeated until
the network undergoes some modification, which is registered in gt+1.

Again, if we focus the analysis on the time evolution of the number of links, Nt, the corresponding
transition matrix becomes:

P(pr, pa) =



0 pr
pr+(m−1)pa

0 · · · 0 0 0

1 0 2pr
2pr+(m−2)pa

· · · 0 0 0

0 (m−1)pa
pr+(m−1)pa

0 · · · 0 0 0

0 0 (m−2)pa
2pr+(m−2)pa

· · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · (m−2)pr
(m−2)pr+2pa

0 0

0 0 0 · · · 0 (m−1)pr
(m−1)pr+pa

0

0 0 0 · · · 2pa
(m−2)pr+2pa

0 1

0 0 0 · · · 0 pa
(m−1)pr+pa

0



(21)
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The analysis of this system can be simplified if we denote pr
pa

= u the unbalance coefficient, since
the matrix can be reformulated as

P(u) =



0 u
u+m−1 0 · · · 0 0 0

1 0 2u
2u+m−2 · · · 0 0 0

0 m−1
u+m−1 0 · · · 0 0 0

0 0 m−2
2u+m−2 · · · 0 0 0

...
...

...
. . .

...
...

...
0 0 0 · · · (m−2)u

(m−2)u+2 0 0

0 0 0 · · · 0 (m−1)u
(m−1)u+1 0

0 0 0 · · · 2
(m−2)u+2 0 1

0 0 0 · · · 0 1
(m−1)u+1 0



(22)

If u < 1 the model has more tendency to add links than to remove them, and vice versa for u > 1.
The analysis and interpretation of the network behavior can be performed either way due to such
symmetry. For instance, if u < 1 the model can be interpreted as characterizing the following behavior:
if the selected pair in gt has an associated link, this link is removed with probability u; if the pair does
not have and associated link, then a link is added. Again, the selection procedure is repeated until a
link is either removed or added, defining gt+1.

In Section 5 the time evolution of the expected value for the number of links, the clustering coefficient,
the connectivity and the sample degree distribution are estimated via simulations procedures.

It can be proved that the resulting stationary distribution has the form:

Pu(Ns = k) =
(m

k )
k·u+m−k

m·uk

∑m
i=0 (

m
i )

i·u+m−i
m·ui

, u ∈ R+ (23)

which can be seen as a generalization of the binomial distribution Bin( 1
2 , m) via the new parameter u.

Figure 1 represents smoothed probability mass functions for the baseline, theoretical given by
Equation (23) and empirical (based in simulations) with pa = 0.3 and pr = 1. Note that asymmetry of
the u value generates a probability function with less entropy than the corresponding to the baseline
mass function.

Repeating a similar procedure to Equations (19) and (20) the corresponding Gi entropy can be
computed as

Hu(Gi) = Hu(Ns) + H(Gi/Ns) = −∑
k

pu(k) log pu(k)−∑
k

pu(k) log
1
(m

k )

= −∑
k

pu(k) log
pu(k)
(m

k )

which for u = 1 becomes H1(Gi) = m · log 2.
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Figure 1. Comparison among smoothed probability mass functions: baseline, theoretical and empirical
for pa = 0.3 and pr = 1.

4.3.1. Alternative Simple Model

Another simple model could assume that whenever an existing edge is selected to be removed,
it is removed with probability pr ∈ [0, 1], whereas, alternatively, a new edge is randomly added.
The transition matrix of the corresponding Nt ∈ {0, 1, . . . , m} for the number of links would be

P =



0 pr
m 0 · · · 0 0 0

1 0 2pr
m · · · 0 0 0

0 1− pr
m 0 · · · 0 0 0

0 0 1− 2pr
m · · · 0 0 0

...
...

...
. . .

...
...

...
0 0 0 · · · (m−2)pr

m 0 0
0 0 0 · · · 0 (m−1)pr

m 0
0 0 0 · · · 1− (m−2)pr

m 0 1
0 0 0 · · · 0 1− (m−1)pr

m 0


(24)

Note that an equivalent symmetric model can be defined as follows. If the selected a pair of nodes
does not have an associated link, we add such a link with probability pa, otherwise an existing link
is removed.

It can be proved that the resulting stationary distribution has the form:

Ppr (Ns = k) =


1

1+∑m
i=1

m·(m−pr)···(m−(i−1)pr)
i! pi

r

if k = 0,

m·(m−pr)···(m−(k−1)pr)
k! pk

r

1+∑m
i=1

m·(m−pr)···(m−(i−1)pr)
i! pi

r

if k ∈ {1, . . . , m},
pr ∈ [0, 1] (25)
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which can be seen as another generalization of the binomial distribution Bin( 1
2 , m) via the new

parameter pr. Again the network cross-sectional entropy can be computed as

Hpr (Gi) = −∑
k

ppr (k) log
ppr (k)
(m

k )

Both models Equations (22) and (24) provide respectively stationary distributions
Equations (23) and (25) which, in general, are not binomial. Therefore, if we take a snapshot of
these stationary distributions, the resulting network will follow a new static model, different from the
standard known reference models for static networks.

Note that again these models can be interpreted as urn-derived finite state discrete-time
birth-death models, in the sense that they do not incorporate network structural information, but only
the total number of links. In other words, these models do not differentiate among networks that
belong to the same equivalence class Ck.

5. Simulations for the Time Evolution of Features

Numerical simulations have been performed to characterize the time evolution of the number
of links, the clustering coefficient and the entropy of the sample degree distribution for the extended
model defined by Equation (22).

Figure 2 shows the evolution (starting from the empty graph) of the relative number of edges
(number of edges divided by the maximum possible number of edges), the clustering coefficient and
the samples degree distribution entropy of a graph that evolves following the extended model defined
by Equation (22) with pa = 0.3 and pr = 1. The estimations of relative number of edges and clustering
coefficient converge to the same stationary value as the iteration number increases; note that the
variance of the clustering coefficient is significantly larger than the variance corresponding the relative
number of edges. The estimated degree distribution presents also a significant variance.

Figure 2. Estimated expected values of relative number of edges, clustering coefficient and sample
degree distribution entropy, as a function of the iteration number (pa = 0.3 and pr = 1).
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Figure 3 represents the estimated expected value of the number of edges as a function of iteration
number (starting from the empty graph) and parameter u. Due to the uniform nature of P(Gi/Ni) the
behavior of the clustering coefficient follows a similar behavior.

Figure 4 represents the estimated expected value of the sample degree distribution entropy as
a function of iteration number (starting from the empty graph) and parameter u. Larger values are
obtained for u = 1 as also illustrated in Figure 1.

Figure 3. Estimated expected value of number of edges as a function of u at iterations 250, 500, 750
and 1000.

Figure 4. Estimated expected value of the sample degree distribution entropy as function of u at
iterations 250, 500, 750 and 1000.
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6. Concluding Remarks

Several basic models for dynamic networks have been proposed and analyzed in terms of the
cross-sectional entropy, and time evolution of the number of links, clustering coefficient and entropy of
the sample degree distribution. The evolution of these features seems to be useful to characterize the
proposed models. Such models can serve as a reference baseline for future research on more complex
models for time evolving networks.
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