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Abstract: New push-pull second harmonic generation (SHG) chromophores 2 were synthesized in 

order to study their linear and nonlinear optical properties. The donor-acceptor π-conjugated 

systems 2 were prepared in good to excellent yields by a simple aldol-type condensation of the 

precursor aldehydes 1 with 6-nitro-2-methyl-1,3-benzothiazole in the presence of NaOH. Hyper-

Rayleigh scattering in dioxane solutions was used to evaluate their second-order nonlinear optical 

properties. The experimental results showed that the optical (linear and nonlinear) properties are 

influenced by the electron-donor strength of the groups of the π-conjugated bridge. The vinyl-

benzothiazole derivative 2b, with methoxyl as donor group, exhibited the largest first 

hyperpolarizability β (1660 × 10-30 esu, 40 times greater than the standard reference pNA molecule) 

and the highest decomposition temperature (Td = 360 ºC). The good balance between nonlinearity 

and thermal stability makes this compound a promising candidate as second harmonic generators 

(SHG) for nonlinear optics. 
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1. Introduction 

Organic molecules comprising strong electron donor and acceptor groups connected by a π-

conjugated system (often designated as donor-π-acceptor or “push-pull” chromophores) are of 

fundamental importance in materials chemistry due to their numerous applications in modern 

technology, such as nonlinear optical (NLO) devices, poled polymers, photovoltaic cells, organic 

light-emitting diodes (OLEDs), semiconductor materials and in optical data storage devices [1]. 

Several push-pull molecules containing benzothiazole as an (auxiliary) electron-withdrawing group 

have already been reported, and typically exhibit favorable fluorescence, electrochemical, 

solvatochromic, photochromic, and NLO properties [2]. We have reported the synthesis and 

characterization of the UV–vis, solvatochromic, thermal and second-order NLO properties of 

benzothiazole derivatives containing bithienyl, [3] arylthienyl [4] and thienylpyrrolyl [5] heterocyclic 

π-spacers in order to evaluate the effect of different π-excessive donor moieties/π-bridges on their 

optical properties. As an extension of our earlier work and in order to improve the thermal stability 

and NLO properties of heterocyclic chromophores of the benzothiazole type, we decided to 

synthesize arylthienyl-benzothiazoles bearing a vinyl spacer between the donor π-excessive 

heterocycle (thiophene) and the acceptor π-deficient benzothiazole moiety. In this work we report 

the synthesis and characterization of the optical and thermal properties of two vinyl-benzothiazole 

derivatives as second harmonic generators (SHG) for NLO applications. 
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2. Materials and Methods 

2.1. General  

Reaction progress was monitored by thin layer chromatography (0.25 mm thick precoated silica 

plates: Merck Fertigplatten Kieselgel 60 F254), while purification was carried out by silica gel column 

chromatography (Merck Kieselgel 60; 230–400 mesh). NMR spectra were obtained on a Varian Unity 

Plus Spectrometer at an operating frequency of 300 MHz for 1H NMR and 75.4 MHz for 13C NMR 

using the solvent peak as internal reference. The solvents are indicated in parenthesis before the 

chemical shift values (δ relative to TMS and given in ppm). Mps were determined on a Gallenkamp 

apparatus and are uncorrected. Infrared spectra were recorded on a BOMEM MB 104 

spectrophotometer. UV-vis absorption spectra (200–800 nm) were obtained using a Shimadzu 

UV/2501PC spectrophotometer. Mass spectrometry analyses were performed at the “C.A.C.T.I. -

Unidad de Espectrometria de Masas” at the University of Vigo, Spain. Thermogravimetric analysis 

of samples was carried out using a TGA instrument model Q500 from TA Instruments. 5-

Phenylthiophene-2-carbaldehyde 1a and 5-(4-methoxyphenyl)thiophene-2-carbaldehyde 1b  used 

as precursors for the synthesis of compounds 2 were purchased from Aldrich and Acros and used as 

received. 6-Nitro-2-methyl-1,3-benzothiazole has been reported previously and is commercially 

available (CAS 2941-63-1). Nevertheless, in our work it was prepared from the corresponding 2-

methyl-1,3-benzothiazole following the literature procedure [6].  

 

2.2. General procedure for the synthesis of compounds 2 

To a solution of 6-nitro-2-methylbenzothiazole (0.20 mmol) and arylthienyl-aldehydes 1 (0.20 

mmol) in ethanol (5 mL) was added dropwise a solution of NaOH (0.30 mmol) dissolved in a 

minimum amount of water. The reaction mixture was left stirring at room temperature for 3-5 h and 

the resulting precipitate was collected and purified by recrystallization from ethanol. 

 

2.2.1. 6-Nitro-2-[(E)-2-(2’-phenylthienyl)vinyl]-1,3-benzothiazole 2a. Orange solid (70%). Mp: 221.0–

222.0 ºC. UV (1,4-dioxane): λmax nm ( /M-1 cm-1) 415.0 (18,165). IR (Nujol) ν 3109, 1777 (C=C), 1607, 

1566, 1515, 1333, 1286, 1223, 1131, 1100, 1064, 946, 919, 892, 834, 758 cm -1. 1H NMR (DMSO-d6) δ 7.33 

(d, 1H, J(trans)=15.6 Hz, =CH), 7.35–7.36 (m, 1H, H-4’’), 7.43–7.47 (m, 2H, H-3’’and H-5’’), 7.55 (d, 1H, 

J=4.0 Hz, H-3’), 7.59 (d, 1H, J=4.0 Hz, H-4’), 7.71 (d, 2H, J=7.2 and 1.6 Hz, H-2’’and H-6’’), 7.98 (d, 1H, 

J(trans)=16 Hz, =CH), 8.09 (d, 1H, J=8.8 Hz, H-4), 8.30 (dd, 1H, J=8.8 and 2.4 Hz, H-5), 9.07 (d, 1H, J=2.4 

Hz, H-7). 13C NMR (DMSO-d6) δ 118.64 (C-7), 119.31 (=CH), 121.47 (C-5), 122.15 (C-4), 124.74 (C-3’), 

125.29 (C-2’’and C-6’’), 128.11 (C-4’’), 128.84 (C-3’’and C-5’’), 132.04 (=CH), 132.32 (C-4’), 132.79 (C-

1’’), 134.61 (C-7a), 138.83 (C-5’), 144.02 (C-6), 146.11 (C-2’), 157.08 (C-3a), 171.74 (C-2). MS (FAB) m/z 

(%): 365 (M+H+, 28), 307 (35), 289 (16), 155 (37), 154 (100). HRMS: (FAB) m/z (%) for C19H12N2O2S2; 

calcd 365.0418; found 365.0424. 

 

2.2.2. 6-Nitro-2-[(E)-2-(2’-(4’’-methoxyphenyl)thienyl)vinyl]-1,3-benzothiazole 2b. Orange solid 

(80%). Mp: 205.0–206.0 ºC. UV (1,4-dioxane): λmax nm (/M-1 cm-1) 430.0 (14,055). IR (Nujol) ν 1671 

(C=C), 1616, 1604, 1592, 1507, 1335, 1248, 1178, 1127, 1027, 946, 833, 809, 754, 720 cm -1. 1H NMR 

(DMSO-d6) δ 3.81 (s, 3H, OCH3), 7.00 (d, 2H, J=6.8 and 2.0 Hz, H-3’’and H-5’’), 7.26 (d, 1H, J(trans)=15.6 

Hz, =CH), 7.42 (d, 1H, J=4.0 Hz, H-3’), 7.54 (d, 1H, J=4.0 Hz, H-4’), 7.63 (dd, 2H, J=6.8 and 2.0 Hz, H-

2’’and H-6’’), 7.96 (d, 1H, J(trans)=16 Hz, =CH), 8.07 (d, 1H, J=9.2 Hz, H-4), 8.28 (dd, 1H, J=8.8 and 2.4 

Hz, H-5), 9.05 (d, 1H, J=2.4 Hz, H-7). 13C NMR (DMSO-d6) δ 55.04 (OCH3), 114.46 (C-3’’and C-5’’), 

118.59 (C-7), 118.67 (=CH), 121.45 (C-5), 122.05 (C-4), 123.53 (C-3’), 125.53 (C-1’’), 126.74 (C-2’’and C-

6’’), 132.21 (=CH), 132.56 (C-4’), 134.55 (C-7a), 137.74 (C-5’), 143.95 (C-3a), 146.42 (C-2’), 157.12 (C-6), 

159.47 (C-4’’), 171.84 (C-2). MS (FAB) m/z (%): 395 (M+H+, 37), 307 (41), 289 (19), 155 (32), 154 (100). 

HRMS: (FAB) m/z (%) for C20H14N2O3S2; calcd 395.0524; found 395.0536. 

 

2.3. Nonlinear optical measurements using the hyper-Rayleigh scattering (HRS) method [7] 

The hyper-Rayleigh scattering (HRS) technique was used to measure the angle averaged first 

hyperpolarizability β of the molecules studied. The experimental set-up for hyper-Rayleigh 
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measurements employed a q-switched Nd:YAG laser and is similar to the one presented by Clays 

and Persoons [7]. Details of the experimental procedure used, have been previously published [5a]. 

We emphasize that particular care was taken to avoid reporting artificially high first 

hyperpolarizabilities by using a pair of interference filters to estimate and correct for the presence of 

a possible contamination of the hyper-Rayleigh signal by molecular fluorescence near 532 nm. 

Further cautions include normalizing the hyper-Rayleigh signal at each pulse using the second 

harmonic signal from a 1 mm quartz plate to compensate for fluctuations in the temporal profile of 

the laser pulses due to longitudinal mode beating and the filtering of the solutions, using a 0.2 mm 

porosity filter, to avoid spurious signals from suspended impurities. Dioxane was used as a solvent 

for all measurements. To calibrate our system a reference solution of p-nitroaniline (pNA) [8] 

dissolved in dioxane at a concentration of 1×10-2 mol dm-3 (external reference method) was used. The 

hyperpolarizability of pNA dissolved in dioxane is known from EFISH measurements carried out at 

the same fundamental wavelength [8]. All solutions were filtered (0.2 mm porosity) to avoid spurious 

signals from suspended impurities. The small hyper Rayleigh signal that arises from dioxane was 

taken into account. Kaatz and Shelton [9] have measured the value of β333 of pNA in dioxane at 1064 

nm to be 40×10-30 esu using the so-called Taylor convention for the first hyperpolarizability [10]. This 

value has been corrected by a factor of 1.88 for the most recent calibration factor of the hyper-Rayleigh 

scattering signal of CCl4, which was used as a reference [11]. 

 

2.4. Thermogravimetric analysis of benzothiazoles 2 

Thermogravimetric analysis of samples was carried out using a TGA instrument model Q500 

from TA Instruments, under high purity nitrogen supplied at a constant 50 mL min-1 flow rate. All 

samples were subjected to a 20 ºC min-1 heating rate and were characterized between 25 and 800º C. 

3. Results and discussion 

3.1. Synthesis 

Benzothiazoles 2 with arylthienyl π-bridges were obtained in good yields (70–80 %) by 

condensation of 6-nitro-2-methyl-1,3-benzothiazole with formyl derivatives 1a-b in ethanol, in the 

presence of aqueous sodium hydroxide solution, at room temperature for 3–5 h (Scheme 1, Table 1). 

In our work, the 2-methyl-1,3-benzothiazole precursor was functionalized with a nitro withdrawing 

group at position 6, which promoted great advantages: (i) increased the acidity of methyl protons at 

position 2, which afforded minor reaction times and better yields and, (ii) reaction products obtained 

were vinyl products in absence of aldol intermediates, without heating the reaction mixture. 6-Nitro-

2-methyl-1,3-benzothiazole has been reported previously and is commercially available. It was easily 

prepared in 84 % yield by nitration of 2-methyl-1,3-benzothiazole using a mixture of nitric 

acid/sulfuric acid (3:1) as nitration agents [6] in sulfuric acid at 2–3 ºC for 30 minutes.  

The 1H NMR and 13C NMR data of vinyl-benzothiazole derivatives 2 were consistent with the 

designed structures. In the 1H NMR spectra, signals at about 7.26–7.33 ppm and 7.96–7.98 ppm were 

detected. All signals appeared as duplets, with J(H,H) coupling constants ranging 16.0 Hz, and were 

attributed to the vinylic protons (CH=CH). These coupling constants clearly confirm the selective 

formation of trans-configurated double bonds. A strong correlation could be observed between the 

π-bridge donor properties and the chemical shift of the vinylic protons in compounds 2 (Table 1). In 

fact, the increase of the donor ability of the attached group in the donor end of the π-conjugated 

bridge (the comparison between compound 2a, R=H, δ=7.33 ppm and compound 2b, R=OMe, δ=7.26 

ppm) decreased the chemical shift of the vinylic protons. In the IR spectra of compounds 2 the vinylic 

=CH was identified as a sharp band within the spectral region of 1671–1777 cm-1. 
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Scheme 1. Synthesis of arylthienyl-vinyl-benzothiazoles 2. 

 

  

Table 1. Yields, IR, UV-visible absorption and 1H NMR data of arylthienyl-vinyl-benzothiazoles 2. 

Benzothiazole R Yield 

(%) 

IR  

(cm-1)a 

H 

(ppm)b 

UV-vis 

λmax (nm)c ε (M-1 cm-1) 

2a H 70 1777 7.33; 7.98 415 18,165 

2b OMe 80 1671 7.26; 7.96 430 14,055 

a For the CH=CH stretching band for compounds 2 (recorded in Nujol). 
b For the CH=CH proton of the vinyl moiety for compounds 2 (DMSO-d6). 
c All the UV-vis spectra were recorded in dioxane (10-4 M solution).   

 

3.2. Photophysical study of benzothiazoles 2 

The absorption and emission spectra of arylthienyl-vinyl-benzothiazoles 2 were measured in 

dioxane (10-4 M solution) (Tables 1 and 2, Figure 1). The absorption spectra of benzothiazoles 2 

showed an intense lowest energy charge-transfer band with high extinction coefficients in the UV-

visible region. The position of this band was influenced by the electronic nature of the donor ability 

of the attached group in the donor end of the π-conjugated bridge. This can be seen comparing the 

absorption data for compounds 2b (max= 430 nm) and 2a (max= 415 nm), in which the replacement of 

the proton by a stronger donor group as methoxyl induced a bathochromic shift. The same behavior 

was observed in the emission spectra, with a bathochromic shift at about 30 nm for compound 2b in 

comparison to the unsubstituted 2a. Large Stokes’ shifts were observed for chromophores 2, as a 

consequence of intramolecular charge transfer from the donor to the acceptor moieties after excitation 

by light. The large Stokes’ shift is indicative of a large difference in the spatial arrangement of the 

chromophore in the absorbing and emitting states, with a consequent increase in dipole moment and 

orientational polarizability [12].  

 

 
 

Figure 1. Normalized UV-vis absorption and emission spectra of compounds 2a and 2b in dioxane at 

T=298 K (2a, λexc=415 nm; 2b, λexc=430 nm) (absorption, full line; emission, dashed line). 
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3.3. Non-linear optical properties and thermal stability of benzothiazoles 2 

We have used the hyper-Rayleigh scattering (HRS) method [7] to measure the first 

hyperpolarizability β of benzothiazoles 2 using the 1064 nm fundamental wavelength of a Q-switched 

Nd:YAG laser. Dioxane was used as solvent, and the β values were measured against a reference 

solution of p-nitroaniline (pNA) [8] in order to obtain quantitative values, while care was taken to 

properly account for possible fluorescence of the chromophores. The static hyperpolarisability β0 

values were calculated using the simple two-level model neglecting damping as proposed by Oudar 

and Chemla [13]. They are therefore only indicative and should be treated with caution (Table 2). 

From Table 2 it is observed that the increase of the electron donor strength of the group in the 

donor end of the arylthienyl π-conjugated bridge, resulted both in red-shifted absorption maxima 

and enhanced  value for benzothiazole 2b (R=OMe, max= 430.0 nm,  = 1660 ×10-30 esu), compared 

to derivative 2a (R=H, max= 415.0 nm,  = 273 ×10-30 esu). In general, the values of the molecular 

hyperpolarizability  for benzothiazoles 2 were 7–40 times greater than that of pNA, whereas the 0 

values were 4–24 times higher than that of pNA, respectively. These NLO-phores 2 were specially 

designed to obtain exceptionally large  values. The introduction of a nitro withdrawing group 

(acting as acceptor part) bound to the benzothiazole auxiliary acceptor moiety, promoted an 

improvement in the acceptor ability and, consequently, enhanced the charge transfer properties. 

 

 

Table 2. UV-vis and emission data,  and 0 values and Td data for arylthienyl-vinyl-benzothiazoles 2a. 

Benzothiazole R UV-Vis. 

max  

(nm)a 

Emission  /10-30 

(esu)b 

0 /10-30 

(esu)c 

Td 

(oC)d em  

(nm)a 

Stokes’ shift 

(cm-1) 

2a H 415 506 4333 273 91 356 

2b OMe 430 537 4633 1660 482 360 

pNA __ 352 __ __ 40 [9-10] 20 __ 

a Experimental hyperpolarizabilities and spectroscopic data measured in dioxane solutions. 
b All the compounds are transparent at the 1064 nm fundamental wavelength. Values are reported in the T 

convention assuming a single longitudinal element dominates the hyperpolarizabilty tensor. Estimated 

uncertainties are 10% of the reported values. 
c Data corrected for resonance enhancement at 532 nm using the two-level model with 0= [1-(max/1064)2][1-

(max/532)2]; damping factors not included 1064 nm [13a, 13b, 14].  
d Decomposition temperature (Td) measured at a heating rate of 20 ºC min–1 under a nitrogen atmosphere, 

obtained by TGA. 

 

 

The thermal stability of chromophores 2 was estimated by thermogravimetric analysis (Table 2). 

As may be observed, the thermogravimetric curves exhibited only one-step weight loss processes 

with high decomposition temperatures, measured at heating rate of 20 ºC min-1 under nitrogen. The 

most stable compound was benzothiazole 2b (Td = 360 ºC), (see Figure 2).  
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Figure 2.  Thermogravimetric curves of compounds 2a and 2b. Temperature gradient: 20 ºC 

min-1 under nitrogen. 

 

 

The comparison of the β and Td values indicate that the nonlinearity and thermal stability are 

well adjusted for these compounds, particularly for compound 2b which possesses both the highest 

β value (1660 × 10-30 esu, 40 times greater than pNA) and the highest decomposition temperature (Td 

= 360 ºC) (Table 2, Figure 2). 

 

4. Conclusions 

We have synthesized new benzothiazoles 2 in good yields by a simple procedure and their 

optical properties were evaluated. The donor-acceptor π-conjugated benzothiazoles 2 functionalized 

by groups with different electronic character, have been evaluated and it was proved that the 

electronic nature of these groups had significant influence on the SHG properties. In particular, we 

have shown that chromophore 2b had high molecular nonlinearity, as it  value was 40 times greater 

than that of the well-known pNA molecule. Compounds 2 exhibited excellent nonlinearities and high 

thermal stabilities to making them appropriate candidates as push-pull second harmonic generators 

(SHG) for NLO applications.  
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