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Abstract: This paper addresses the issue of robotic haptic exploration of 3D objects using an 

enhanced model of visual attention, where the latter is applied to obtain a sequence of eye fixations 

on the surface of objects guiding the haptic exploratory procedure. According to psychological 

studies, somatosensory data resulted as a response to surface changes sensed by human skin is used 

in combination with kinesthetic cues from muscles and tendons to recognize objects. Drawing 

inspiration from these findings, a series of 5 sequential tactile images are obtained by adaptively 

changing the size of the sensor surface according to the object geometry for each object, from various 

viewpoints, during an exploration process. We take advantage of the contourlet transform to extract 

several features from each tactile image. In addition to these somatosensory features, other 

kinesthetic inputs including the probing locations and the angle of the sensor surface with respect 

to the object in consecutive contacts are added as features. The dimensionality of the large feature 

vector is then reduced using a self-organizing map. Overall 12 features from each sequence are 

concatenated and used for classification. The proposed framework is applied to a set of four virtual 

objects and a virtual force sensing resistor array (FSR) is used to capture tactile (haptic) imprints. 

Trained classifiers are tested to recognize data from new objects belonging to the same categories. 

Support vector machines yield the highest accuracy of 93.4%. 

Keywords: Haptic exploration; visual attention; visuo-haptic interaction; tactile object recognition 

 

1. Introduction 

Many psychological research articles over the past three decades focus on the haptic perception 

and exploratory procedures employed by humans to identify objects and their characteristics. 

Lederman et al [1] identify six manual exploratory procedures exploited by humans when interacting 

with an object, among which “enclosure” and “contour following” provide information about the 

global and exact shape of objects respectively. The authors also refer to two different types of 

information being used during these exploratory procedures: from mechanoreceptors in the skin 

(cutaneous cues), capturing fine textural details, and from mechanoreceptors in joints and tendons 

(kinesthetic cues) for geometrical shape identification. Reproducing such haptic exploration 

techniques for humanoid robots has recently attracted a wide research interest. On the other hand, 

tactile perception is proven to be more reliable in presence of vision [2], and these two senses 

contribute closely in human sensorial loop. Inspired from the visuo-haptic interaction in human 

sensorial loop and the sequential nature of haptic exploration to integrate several tactile features of 

objects, in this work we have developed a framework for robotic object recognition based on tactile 

probing from a sequence of eye fixations on the object surface. Accordingly, an enhanced model of 

visual attention is employed to determine a sequence of eye fixations on the surface of objects from 

different viewpoints. Subsequently tactile data are collected by adaptively changing the sensor 
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surface size according to the local object geometry. These cutaneous cues together with the 3D 

coordinates of probing locations and the normal vector of object surface at probing locations as two 

kinesthetic cues are used for object recognition. To confirm the efficiency of our framework before 

implementation, we have performed experiments using a virtual tactile sensor and virtual 3D models. 

The paper is organized as follows: A brief literature review of related work on tactile object 

recognition is provided in section 2. Section 3 presents the proposed framework. Obtaining the 

sequence of eye fixations and the adaptive collection of tactile data are discussed in section 3.1 and 

3.2, respectively. Section 3.3 discusses feature extraction, while section 3.4 presents the kinesthetic 

cues employed in object recognition. The data processing strategy is introduced in section 3.5.  

Finally, section 4 shows obtained results and section 5 concludes the work. 

2. State of the art 

Enabling humanoid robots with a capability of sensing their environment similar to humans is 

a challenging subject in recent robotic research. Artificial sense of touch allowing the identification of 

a wide range of object characteristics including the deformability, elasticity, textural features, 

temperature, approximate weight, etc. is a beneficial technology attracting a huge research interest. 

Accordingly, a variety of tactile sensors are designed and manufactured. In a recent publication, Chi 

et al. [3] discuss the latest advancements in technology of tactile sensors. Tactile arrays developed 

using force sensing resistors have demonstrated a high reliability for object recognition. Liu et al. [4] 

use a three-finger robot to collect tactile sequences. Dynamic time wrapping between sequences is 

then computed to measure dissimilarities for classification based on joint sparse coding. Authors in 

[5] capture tactile data as displacement of finger joints of a robot when grasping an object. They train 

a self-organizing map (SOM) for classification purposes. Luo et al. [6] employ the 3D coordinates of 

probing locations with the index of clustered tactile data using k-mean algorithm for object 

classification. Gorges et al. [7] take benefit from a robotic hand with five fingers to recognize a set of 

seven objects based on haptic data acquired from a sequence of palpations. Literature has also 

witnessed several attempts in integration of haptic and visual data for object recognition. Gao et al. 

[8] train a deep neural network architecture for object classification by learning both haptic and visual 

features. They demonstrate that the integration of visual and haptic features outperforms the case 

where visual and tactile characteristics are employed separately. In our previous work [9], we 

developed a framework for object recognition where tactile data are gathered from visually salient 

regions with the aim to overcome the high computational cost of probing the whole surface of objects. 

In this work we take advantage of a model of visual attention to comply to the sequential nature of 

haptic exploration with a sequence of eye fixations. To reproduce the exploration strategies 

performed by humans where the global shape of object is perceived in general by the palm and finer 

details are captured by fingertips, the size and precision of the tactile sensor adaptively changes based 

on the geometrical characteristics of objects. 

3. Framework  

Figure 1 illustrates our framework for object recognition based on guided haptic exploration. 

The first two stages of the work correspond to the development of a model of visual attention and to 

the determination of the sequential strategy to move the tactile sensor. For this purpose, the virtual 

camera of Matlab turns around each object to capture images from 16 viewpoints and a 

computational model of visual attention [10] is used to determine the sequence of eye fixations from 

each viewpoint. The tactile sensor then follows the sequences of eye fixations to collect tactile imprints 

at their locations. In next stage, a vector of 16 features is computed for each tactile image. The 3D 

normal vector and the 3D coordinate of probing locations add up six other tactile features. 

Consequently, five vectors (as we use series of 5 sequential tactile images) of size 1 × 22  are 

computed for each sequence of eye fixations. To reduce the dimensionality of feature vectors, a self-

organizing map (SOM) is trained, resulting in five-dimensional feature vectors. The standard 

deviation, rms value, and skewness of each sequence and the same measures extracted from wavelet 

coefficients for a 3-level decomposition of sequences by daubechies 2 wavelets are concatenated and 
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fed to five classifiers, namely k-nearest neighbors (kNN), support vector machine (SVM), decision 

trees, quadratic discrimination and Naïve Bayes for classification. In this work, we have conducted 

experiments over four classes of objects each containing three objects, two of which are used for 

training the classifiers and the third one for testing. Further details are provided in following sections. 

 

Figure 1. Framework of the introduced tactile object recognition strategy. 

3.1 Sequences of eye fixations  

In human visual system, the allocation of the narrow high-resolution part of retina (fovea) 

permitting the full visual perception is referred to as focus of attention. Research from neuroscience 

confirms the contribution of a series of features extracted in field of view such as color opponency, 

contrast, curvature, intensity, orientation etc. in the allocation of attentional resources. Accordingly, 

researchers tried to reproduce this process as a computational model of visual attention for a rapid 

automatic analysis of scenes. In this work, we have adopted the enhanced model of visual attention 

presented in [10] to compute saliency maps for 3D objects. These saliency maps assign higher 

intensities to regions attracting the attention based on which a sequences of eye fixations can be 

retrieved for each viewpoint of the object in order of importance. Only the first 5 elements of the 

sequence of eye fixations for each object are taken into consideration in the remainder of the paper. 

The tactile sensor follows this sequence of eye fixations to collect tactile data in view of object 

classification. Figure 2 summarizes the procedure of obtaining the sequence of eye fixations. 

 

 

Figure 2. Determination of the sequence of eye fixations for each viewpoint. 
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Apply a model of 
visual attention to 
images taken from 

different viewpoints 
of object.

Determine a 
sequence of probing 

locations for each 
viewpoint. 

Capture local tactile 
data for each 

sequence.

Extract features from 
tactile imprints 

using contourlet 
transform (16 

features). 

Capture two other 
kinesthetic cues: 

probing locations 
and normal vectors 

(6 features). 

Concatenate features 
from local tactile 

imprints with 
features from 

kinesthetic cues.

Dimentionality 
reduction (22 to 5) 

using a self 
organizing map.

Feature extraction 
from sequential data 

(5 sequences of 
length 5).

Train the classifier.
Test the classifier on 

new data.



Proceedings 2018, 2, x FOR PEER REVIEW 4 of 7 

 

In force sensing resistors (FSR)-based tactile sensors, the deformation on the surface of the elastic 

surface covering the FSR array, when subjected to an external force and in contact with the surface of 

an object, is transduced to produce a tactile image. In this work, a virtual tactile sensor is simulated 

such that the deformation in sensor’s surface is measured as the distance between points on a 

tangential plane (representing the surface of the sensor) and the object, when the center of the plane 

is in direct contact with the object. The obtained values are then normalized between zero and one to 

yield a tactile image. Using the probing locations at the determined eye fixations in section 3.1, the 

center of sensor array is considered positioned at these locations and simulated to touch the probing 

point. As a result, in certain situations such as concave surfaces, negative distances between the object 

and sensor surface can be achieved indicating an intersection between the sensor and object. Figure 

3 illustrates an example of such a case. Since in such probing cases data cannot be acquired in reality 

(i.e. using real rigid backing FSRs), and in compliance with the haptic exploration strategy by humans 

where the overall shape of objects is probed by the palm (large tactile surface) and finer details can 

be captured by fingertips (small tactile surface), in current research the sensor’s surface is adaptively 

diminished to capture the local tactile data. However, to keep the size of tactile image consistent 

(i.e.  32 × 32  during experimentation), the distance between the sensing points is reduced, thus 

resulting in a higher local precision.   

 

 
  

Figure 3. Adaptive modification of tactile sensor size. 

3.3. Feature extraction from tactile imprints 

Feature extraction from tactile data is a determining factor in object recognition. Authors in [11] 

prove the efficiency of wavelet decomposition in feature extraction from tactile data. On the other 

hand, contourlet transformation is believed to outperform the wavelet decomposition to extract 

features when applied to images [12]. Consequently, in this paper we have used the contourlet 

transformation to extract features from tactile imprints. As such, a 16 directional contourlet transform 

[12] is first applied to each tactile image and then the standard deviation of obtained coefficients for 

each directional sub-band is computed to produce a feature vector of size 16.  

3.4. Kinesthetic cues 

Human skin is not the only source of tactile information. When exploring an object with the 

hand, the angle between finger phalanges and the position of fingers as they are in contact with the 

object surface, supply crucial information about the size and shape of the explored objects, 

information that is not available from the skin mechanoreceptors. In neuroscience such data from 

joints, bones and macules are referred to as kinesthetic cues. In this paper to employ kinesthetic cues 

for object recognition, we have added the 3D coordinates of the probing locations as well as the local 

normal vectors at the probing points as features for classification. 

3.5 Data processing 

As previously explained, we use 16 features extracted from each tactile imprint in addition to 

the 3D coordinates and the normal vector of probing points, thus resulting in a final feature vector of 

size 1 × 22. Five consecutive imprints captured over the sequence of eye fixations are used for 

classification. As high dimensional data has a negative impact on classification accuracy, we train a 

self-organizing map to reduce the 22-dimensional feature vector to only five dimensions, thus 
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resulting in five sequences (as we have five features) of length five (five tactile data from the sequence 

of eye fixations). To train a classifier, we need to determine how each feature varies over the sequence 

when moving the tactile sensor. For this purpose, we take advantage of daubechies 2 wavelet to 

decompose each sequence into 3 levels. The standard deviation, rms value and skewness of the 

wavelet coefficients for each level as well as those of the sequence itself are concatenated to produce 

a final feature vector for classification.  

4. Experiments and results 

Figure 5 illustrates the 3D models used for experimentation. The objects in first two columns are 

used to train classifiers and the tactile data from objects in the third column are used for testing. As 

briefly mentioned before, five classifiers, namely kNN, SVM, decision trees, quadratic discrimination 

and Naïve Bayes are trained using the generated data set according to the previously explained data 

processing strategy.  
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Figure 4. 3D models used for training and testing. 

The results obtained using the proposed framework are compared in Table 1 with the case where 

sequential data are captured by randomly moving the sensor over the object surface. When collecting 

data at random positions over the surface of the object, we also use a sequence of 5 tactile imprints 

for each object. As one can notice in this table, results confirm that in most cases, the performance 

when using the sequence of eye fixations to guide the probing outperforms the case where tactile 

data is acquired at random positions over the surface of objects. SVM demonstrates a superior 

performance for sequence classifications compared to other classifiers. Quadratic discrimination with 

a maximum difference of 1.86% closely competes with the SVM. 

Table 1. Object classification results 

Classifier 
Guiding the tactile sensor by a  

sequence of 5 eye fixations 

Using a random movement 

of the tactile sensor 

kNN 85.58% 84.94% 

SVM 93.45% 86.14% 

Decision trees 73.56% 71.63% 

Quadratic discrimination 91.89% 84.28% 

Naïve Bayes 56.68% 57.16% 
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5. Conclusion 

In this work we have proposed a framework for tactile object recognition where a model of 

visual attention is used to guide sequential tactile exploration. A virtual tactile sensor is simulated to 

collect tactile data. Inspired from human tactile exploration and object recognition the size of tactile 

sensor adaptively modifies to capture tactile images. We have employed contourlet transformation 

to extract features from tactile imprints. Two kinesthetic cues as the normal vectors and 3D 

coordinates of probing locations are added to provide information about the size and general shape 

of objects.  A self-organizing map is trained to reduce the high dimensional features. A series of 

features from sequences are then extracted to construct a final data set. Five different classifiers are 

trained and tested over data from a new object. Support vector machines and quadratic 

discrimination classifiers with accuracies of 93.45% and 91.89% respectively achieve the highest 

accuracies. We thus demonstrate that employing the sequence of eye fixations to guide the tactile 

probing operation enhances the classification accuracies.  

Funding: This work is supported in part by the Natural Sciences and Engineering Research Council of Canada 

(NSERC) Discovery grant program and by the Ontario Graduate Scholarship (OGS) program. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Lederman, S. J.; Klatzky, R. Haptic perception: A tutorial, Attention, Perception, & Psychophysics, 2009, 

Volume 71, no. 7, pp. 1439-1459.  

2. Klatzky, R. L.; Lederman S. J.; Matula, D. E. Haptic Exploration in the Presence of Vision, Human Perception 

and Performance, 1993, Volume 19, no. 4, pp. 726-743.  

3. Chi, C.; Sun, X.; Xue, N.; Li, T.;Liu, C. Recent Progress in Technologies for Tactile Sensors, Sensors (Basel, 

Switzerland), 2018, Volume 18, no. 4, 948.  

4. Liu, H.; Guo, D.; Sun, F. Object Recognition Using Tactile Measurements: Kernel Sparse Coding Methods, 

IEEE Trans. on Instrumentation and Measurement, 2016, Volume 65, no. 3, pp. 656-665.  

5. Ratnasingam, S. and McGinnity, T. Object recognition based on tactile form perception, IEEE Workshop 

Robotic Intelligence in Informationally Structured Space,2011, Paris.  

6. Luo, S.; Mou, W.; Althoefer, K.; and Liu, H.  iCLAP: shape recognition by combining proprioception and 

touch sensing, Autonomous Robots, 2018, pp. 1-12.  

7. Gorges, N.; Navarro, S. E.; Goger, D.; Worn, H. Haptic Object Recognition using Passive Joints and Haptic 

Key Features, IEEE International Conference on Robotics and Automation, 2010, Anchorage, Alaska, USA.  

8. Gao, Y.; Hendricks, L.; Kuchenbecker, K. J. Deep learning for tactile understanding from visual and haptic 

data, IEEE International Conference on Robotics and Automation (ICRA), 2016, Stockholm.  

9. Rouhafzay, G.; Pedneault, N.; Cretu, A.-M.  A 3D Visual Attention Model to Guide Tactile Data 

Acquisition for Object Recognition, in Proceedings of the 4th International Electronic Conference on Sensors and 

Applications, 2017.  

10. Rouhafzay G.; Cretu, A.-M.  Perceptually Improved 3D Object Representation Based on Guided Adaptive 

Weighting of Feature Channels of a Visual-Attention Model, 3D Research, 2018, Volume 9, no. 3.  

11. Adi, W. and Sulaiman, S. Using Wavelet Extraction for Haptic Texture Classification, Visual Informatics: 

Bridging Research and Practice. IVIC, Lecture Notes in Computer Science. 2009, Volume 5857, pp. 314-325.  

12. Do, M. N. and Vetterli, M. The Contourlet Transform: An Efficient Directional Multiresolution Image 

Representation, IEEE Trans. Image Processing, 2005, Volume 14, no. 12, pp. 2091-2106. 

©  2018 by the authors. Submitted for possible open access publication under the terms and 

conditions of the Creative Commons Attribution (CC BY) license 

(http://creativecommons.org/licenses/by/4.0/). 

 

http://creativecommons.org/licenses/by/4.0/

