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Abstract: The seismic monitoring of masonry structures is especially challenging due to their 

brittle resistance behavior. A tailored sensing system could, in principle, help to detect and locate 

cracks and anticipate the risks of local and global collapses, allowing prompt interventions and 

ensuring users’ safety. Unfortunately, off-the-shelf sensors do not meet the criteria that are needed 

for this purpose, due to their durability issues, costs and extensive maintenance requirements. As a 

possible solution for earthquake-induced damage detection and localization in masonry structures, 

the authors have recently introduced the novel sensing technology of “smart bricks”, that are clay 

bricks with self-sensing capabilities, whose electromechanical properties have been already 

characterized in previous work. The bricks are fabricated by doping traditional clay with conductive 

stainless steel microfibers, enhancing the electrical sensitivity of the material to strain. If placed at 

key locations within the structure, this technology permits to detect and locate permanent changes in 

deformation under dead loading conditions, associated to a change in structural conditions 

following an earthquake. In this way, a quick post-earthquake assessment of the monitored structure 

can be achieved, at lower costs and with lower maintenance requirements in comparison to 

traditional sensors. In this paper, the authors further investigate the electro-mechanical behavior of 

smart bricks, with a specific attention to the fabrication of the electrodes, and exemplify their 

application for damage detection and localization in a full-scale shaking table test on a masonry 

building specimen. Experimental results show that smart bricks’ outputs can effectively allow the 

detection of local permanent changes in deformation following a progressive damage, as also 

confirmed by a 3D finite element simulation carried out for validation purposes. 
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1. Introduction 

The majority of historical buildings worldwide are made of stone or brick masonry and their 

cultural value makes their maintenance and preservation of pivotal importance for the community. 

Monitoring technologies can aid the preventive conservation activities by using sensor networks, 

deployed at critical locations within the building, to identify the behavioral conditions of the 

structure and their variations caused by cracks or incipient damages due to the degradation of the 

materials or critical natural events. In particular, masonry structures are quite vulnerable to 

earthquakes due to their brittle behavior which often results in sudden failures [1, 2]. A tailored 
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Structural Health Monitoring (SHM) can be useful to recognize such occurrence and increase 

occupants’ safety [3]. To this purposes, several researchers are working at developing low-invasive 

and effective techniques for evaluating mechanical properties, as well as dynamic signatures, of 

masonry structures [4]. In order to contribute to this research, the Authors have recently developed a 

burned clay sensor, called smart brick, with strain-monitoring capabilities and conceived to be 

inserted within the masonry as a normal clay brick [5, 6]. The smart brick has a clay matrix doped 

with steel micro fillers which enhance the electrical capabilities of the material. Critical issues arise in 

the correct quantification and dispersion of the inclusions, in the optimization of the measurement 

setup, as well as in signal processing aimed at damage detection and localization. In this paper, the 

authors further investigate the electro-mechanical behavior of smart bricks with respect to previous 

work, with a specific attention to the fabrication of the electrodes, and exemplify their application for 

damage detection and localization in a full-scale shaking table test on a masonry building specimen. 

Experimental results show that smart bricks’ outputs can effectively allow the detection of local 

permanent changes in deformation following a progressive damage, as also confirmed by a 3D finite 

element simulation carried out for validation purposes. 

2. Structural Clay-based Sensors 

The smart bricks used for the present research were prepared by mechanically mixing different 

amounts of fillers – from 0.25% to 2% with respect of the whole weight - into the fresh clay (Fig. 1(a)). 

The fillers were stainless steel fibers, model R.STAT/S. The resulting composite was poured into 

prismatic molds, initially sprinkled with sand and then dried (Figs. 1(b-c)). After a thermal cycle of 

12 hours up to at 900°C, the samples were instrumented with two different types of electrodes: 

copper plates or conductive resin with embedded copper strips [7] (Fig. 1(d)). The conductive resin 

was obtained by adding graphite powder to Araldite 2020 in the percentage of 75% in weight. The 

smart bricks were prisms with dimensions of 50x50x70 mm3. It is key to note that the deployment of 

the electrodes is fundamentally different in the two configurations, as copper electrodes lay 

horizontally, while resin electrodes lay vertically. In the latter case, therefore, spurious 

strain-sensing effects at the contact interface with the electrodes due to the applied vertical 

compression should be eliminated. 

 

 

Figure 1. Photographic sketch of the preparation procedure of the brick sensors with steel 

microfibers  

3. Methods 

Three different types of tests were carried out to compare the electrical behavior of the smart 

bricks with different types of electrodes and to investigate their sensing capabilities: electrical tests 

for investigating conductivity properties, electromechanical tests for the analysis of strain sensitivity 

and a full-scale test on a masonry small building to demonstrate the potential of the technology for 

in situ monitoring purposes. 

3.1. Electrical tests 

Electrical tests were carried out by applying a square wave with 20 V peak-to-peak by using a 

RIGOL DG1022 function generator. The function had a duty cycle of 50% and a frequency of 1Hz. 

Electrical measurements were recorded through a DAQ NI PXIe-1073 with a digital multimeter NI 

PXI-4071 at a sampling frequency of 10 Hz. 
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Conductivity was achieved through the following equation, considering current measurements 

taken at the point at 80% of the positive constant part of the current waveform signal:  
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where, V is the applied constant voltage (Vpp/2), It is the measured current intensity, A is the section 

of the sample, l the distance between the electrodes and t is the time of the measurement. 

 

 

Figure 2. Setup of the electrical and electromechanical tests: (a) data acquisition system; (b) a sample 

during the tests. 

 

Figure 3. Full-scale tests: (a) placement of the smart brick in the masonry; (b) setup for the electrical 

measurements; (c) picture of the tested building  

3.2. Electromechanical tests 

Electromechanical tests were conducted by using the same setup described in Section 3.1. The 

loading-unloading cycles were applied using a press with a maximum load of 20 tons. Figure 2 

shows the electrical setup and a detailed view of a smart brick during the tests. 

3.3. Tests on full-scale masonry buildings 

The full-scale test was carried out on a masonry building of two floors, built at the ENEA 

Casaccia Research Center (Fig. 3(c)), with a base of 290 x 340 cm and a height of 490 cm. Eight smart 

bricks were placed in the bottom parts of the four building’s façades (Fig. 3(a)). The masonry 

structure was subjected to increasing seismic inputs (including white noise inputs (WNs) and 
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earthquakes (Es)) through a shaking table. The electrical measurements were recorded after each 

earthquake input (Fig. 3(b)).  

The changes in volumetric strain, for a step, s, of the seismic sequence and for the i-th smart 

brick, were evaluated with:  
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where s

iR  is the electrical resistance measured after  the s-step of the seismic sequence, 0

iR  𝑅𝑖
0

 is 

the value of the  electrical resistance for the undamaged condition and 𝐺𝐹𝑖  𝑖𝑠 the estimated gauge 

factor. 

4. Tests and Results 

4.1. Electrical tests 

Figure 4 shows the comparison of the electrical conductivity measured on the smart bricks with 

different types of electrodes. The results highlight a consistent behavior, with a percolation like 

trend, also demonstrating, at the same time, that resin electrodes result in an overall higher 

conductivity conceivably owing to a reduction of the contact electrical resistance. 

 

Figure 4. Comparison of electrical tests on samples with plate and resin electrodes. 

4.2. Electromechanical tests 

Figure 5 shows an example of electromechanical outputs of smart bricks with different types of 

electrodes and a comparison against the outputs of traditional strain gauges applied on the sensors. 

A clear correlation between actual strain and electrical outputs of smart bricks can be observed, 

where it has to be noted that the brick with resin electrodes provides a more linear strain sensing 

behavior compared to the one with copper plate electrodes. In this case the lower strain sensitivity is 

due to the different configuration of the electrodes (cfr. Section 2), while the improved quality of the 

signal is conceivably due to the elimination of spurious effects at the contact interface.  

Table 1 summarizes the electrical performance of the smart bricks with different amounts of 

fillers and instrumented with copper plate electrodes. Although resin electrodes are better 

performing, in this exploratory study smart bricks with copper plate electrodes were used for the 

full scale experiment in order to maximize strain sensitivity. 

4.3. Tests on full-scale masonry buildings 

Experimental results obtained at increasing levels of the white noise and seismic loads were 

compared to a numerical macro-mechanical FE analysis, using a model characterized by a mesh size 

of 50 mm. Further details on the numerical simulations are omitted for the sake of brevity but are 

provided in the slide presentation of the paper. 
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Figure 5. Electromechanical tests of the smart bricks with 0.75% of stainless steel microfibers with: (a) 

copper plate electrodes; (b) resin electrodes. 

 

Table 1. Initial resistance R0, gauge factors GFs and Sensitivity S of smart brick with copper plate 

electrodes and different amounts of fillers. 

Sample R0 [Ω] GF S [Ω] 

0.00%  6,34E+07 181 1,15E+10 

0.25% 3,59E+07 496 1,78E+10 

0.50% 2,44E+07 219 5,33E+09 

0.75% 5,19E+06 464 2,41E+09 

1.50% 2,48E+06 1028 2,55E+09 

2.00% 3,40E+05 795 2,71E+08 

 

 

 

 
Figure 6. Comparison between normalized changes in volumetric strain from the experimental and numerical 

measurements for sensors placed on façade 4.  
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Figure 6 shows an example of comparison between experimental and numerical outputs in 

terms of volumetric strain under dead load after each step of the experimental sequence: the results 

appear to be quite correlated and confirm that the smart bricks are capable to provide the trend of 

change of volumetric strain under dead loads due to changes in structural conditions caused by 

progressive damage. 

5. Conclusions 

This paper has presented the results of electrical, electromechanical and full-scale investigations 

on novel smart bricks doped with stainless-steel microfibers. Different types of electrodes and 

various amounts of fillers were analyzed in order to assess the self-sensing behavior of the smart 

sensors. The results showed that vertical resin electrodes are able to reduce the contact resistance 

affecting electrical measurements and are promising for further application. The smart bricks 

possess interesting self-monitoring capabilities, demonstrated by their high gauge factors. Full-scale 

results show that such smart bricks can identify permanent changes in strain under dead loads 

associated to a progressive damage: this result is particularly valuable for quick assessments of a 

structural integrity of masonry constructions after important events as earthquakes. 
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