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Abstract: Water resources numerical models are dependent upon various input hydrologic field 

data.  As models become increasingly complex and model simulation times expand, it is critical to 

understand the inherent value in using different input datasets available.  One important category 

of model input is precipitation data. For hydrologic models, the precipitation data inputs are 

perhaps the most critical.  Common precipitation model input includes either rain gauge or 

remotely-sensed data such next-generation radar–based (NEXRAD) data. NEXRAD data provides 

a higher level of spatial resolution than point rain gauge coverage, but is subject to more extensive 

data pre and post processing along with additional computational requirements.  This study first 

documents the development and initial calibration of a HEC-HMS model of a sub-tropical 

watershed in the Upper St. Johns River Basin in Florida, USA.  Then, the study compares 

calibration performance of the same HEC-HMS model using either rain gauge or NEXRAD 

precipitation inputs.  The results are further discretized by comparing key calibration statistics 

such as Nash-Sutcliffe Efficiency for different spatial scale and at different rainfall return 

frequencies.  The study revealed that at larger spatial scale, the calibration performance of the 

model was about the same for the two different precipitation datasets while the study showed some 

benefit of NEXRAD for smaller watersheds.  Similarly, the study showed that for smaller return 

frequency precipitation events, NEXRAD data was superior. 

Keywords: Thiessen Polygon; NEXRAD; Rain Gauge Precipitation; HEC-HMS; Hydrologic Model; 

St. Johns River 

 

1. Introduction 

Computer models that simulate hydrologic runoff processes are essential tools for 

understanding and describing the overall hydrologic cycle.  They are routinely used for important 

studies regarding water management, water quality issues, land use changes, flood inundation, and 

many other forecasting applications. The success of current model development and subsequent 

hydrologic prediction lies in the proper selection of model input parameters. Some researchers 

believe spatial and temporal variability of precipitation data are the main source of input data 

uncertainty when rainfall-runoff models are applied [1]. Since precipitation is the main driving 

mechanism for hydrologic models, selecting the suitable meteorological input dataset for 

precipitation is perhaps the most critical step in model development.  
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Traditionally, precipitation measurements from rain gauges or meteorological stations have 

been used as the only reliable source of precipitation in watershed modeling [2]. The benefit of rain 

gauges is their ability to obtain a precise point value for precipitation, with minimal data processing 

needed for use in hydrologic model applications. The main limitation in the reliance on rain gauge 

technology is that the rain gauge network cannot supply information about rainfall occurring 

between the gauges, and as a result, the network may not fully capture rainfall events demonstrating 

high spatial variability [3-4]. In an effort to use these point measurement locations, areal averaging 

of measured precipitation amounts is necessary. A commonly used method, the Thiessen Polygon 

method, calculates the weight of each rain gauge according to the rain gauge location to create a 

polygon network and applies the gauge rainfall quantity uniformly over the polygon area.  

In recent years, technological advancements have provided rainfall estimates derived from 

remotely-sensed data.  The use of remotely-sensed, radar-based data for rainfall estimation has 

evolved, presenting the opportunity of more accurate rainfall predictions. This has led to the use of 

satellite-based rainfall products, such as the Next-Generation Weather Radar (NEXRAD) data 

available in the USA and select overseas locations, in many hydrological modeling applications due 

to the availability of spatially continuous estimations at relatively fine spatial resolution. The 

NEXRAD data system was initiated in the early 1990s by the United States National Weather Service 

(NWS) and consists of a national network of radars known as the WSR-88D (Weather Surveillance 

Radar 1988) [5]. Due to the indirect nature of radar rainfall measurements, NEXRAD data may be 

subject to many sources of uncertainty such as radar-based factors (antenna, transmitter, and 

receiver), ground clutter, anomalous beam propagations, radar beam overshooting, and range effects 

caused by an increase in beam elevation and degradation of resolution due to beam spreading [2, 6-

7]. Additionally, one of the largest sources of error can be the chosen reflectivity-to-rainfall (Z-R) 

relationship because it is directly related to the amount of precipitation estimated. Many empirical 

Z-R relationships have been developed because different climate conditions and rainfall 

characteristics can impact raindrop size distributions [8].   

Since the acquisition of precipitation data and its application becomes more time consuming and 

expensive as the spatial resolution is increased (through the incorporation of NEXRAD data), the 

determination of the appropriate data source needed to provide satisfactory results in a hydrologic 

model is critical. Due to the limitations inherent with gauge-measured and radar-derived data, it is 

important to understand the quality of the data (in terms of precipitation quantity), possible bias, and 

systematic offsets. Many authors have found that NEXRAD underestimated rain when compared to 

rain gauge measurements [9,4], whereas Mazari [10] concluded that radar data was comparable to 

rain gauge measurements. Other researchers recommend understanding the potential differences in 

precipitation values, quality of radar data, and the overall bias of radar generated rainfall compared 

to rain gauge rainfall quantities, as they have a direct impact on hydrologic simulations [11]. 

The potential for improved accuracy of hydrologic model simulations and forecasts using radar 

data instead of point gauge data has been studied previously [12, 1, 13, 11]. Other research 

determined that NEXRAD data was generally less accurate in predicting the streamflow volumes 

using the hydrologic simulation code Hydrologic Engineering Center- Hydrologic Modeling System 

(HEC-HMS) [14] as compared to gauge-only simulations for two basins in central Tennessee, USA. 

Results of Kalin and Hantush [1] showed that during calibration of a Soil Water Assessment Tool 

(SWAT) model [15-16] in the Pocono Creek Watershed (~120 km2) the NEXRAD and rain gauge 

driven model performance statistics were comparable and the simulated hydrographs were similar 

to the observed flow hydrographs. Looper and Vieux [17] investigated streamflow prediction 

accuracy using radar-derived precipitation estimates and gauge observations on a physics-based 

distributed (PBD) hydrologic model, Vflo [18-19]. It was determined that the radar data showed more 

accurate hydrologic prediction for flash flood events. Results show that there are mixed conclusions 

in regards to whether radar-derived precipitation is a better alternative than traditional fixed 

instrument-based rain gauge data. Only limited inner comparison of watershed response 

improvement and its relationship at the spatial scale and rain intensity level has been completed.  
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This study was designed to assess the intrinsic value of the two precipitation input types (rain 

gauge versus NEXRAD) in the development of a rainfall-runoff hydrologic simulation model.  

Available stream gauges in the watershed were used to compare simulated discharges to actual 

discharges.  These watersheds are typical for low-topographic drive systems situated around the 

globe.  In order to assess and compare the value of the two input data types, a hydrologic simulation 

model was developed for sub-tropical watersheds located in central Florida, USA.  The overall 

development of the model using HEC-HMS is briefly discussed while the focus of the research centers 

on the overall value of the two precipitation input data sets.  In order to measure the value of each 

precipitation input dataset, a comparative assessment of the improvement or decline in calibration 

and validation performance statistics of the hydrological model results regarding:  

(i) Watershed scale and, (ii) rainfall return frequency was completed.  These proxies were then 

used to determine when NEXRAD data provides little to no advantage over rain gauge data, 

estimated using the Thiessen Polygon method, across a model domain.  This work is very important 

as it clearly illustrates that automatically using the most complicated data input for hydrologic 

models may not be prudent if the results of the simulations deliver no advantage in model 

performance or accuracy.  Ultimately, the research revealed that at larger spatial scale, the 

calibration performance of the model was about the same for the two different precipitation datasets 

while the study showed some benefit of NEXRAD for smaller watersheds.  Similarly, the study 

showed that for smaller return frequency precipitation events, NEXRAD data was superior. 

2. Materials and Methods  

As was noted in the Introduction, this research compares the inherent value of two different 

precipitation input data sets for use in rainfall-runoff hydrologic modeling.  The study approach 

uses a hydrologic model of a portion of the St. Johns River (SJR) watershed to do a comparative 

assessment. The study area chosen for simulation purposes was the SJR located in northeast, Florida 

USA. The general topography of the project area is flat, with an average slope of approximately 0.003 

m/km, which results in a more lacustrine than riverine characteristic [20].  The climate of the central 

and eastern portion of Florida is mainly humid subtropical, similar to many other regions of the 

world at the same latitude. The average rainfall is between 1,100 mm to 1,500 mm per year [21]. The 

watershed is comprised of multiple sub-basins of various sizes and hydrologic properties that drain 

toward the flow-way of the SJR. Due to its size, the SJR has been divided into major “Basins” by the 

St. Johns River Water Management District (SJRWMD), a state agency whose work focuses on 

managing water supply, water quality and natural systems management, and flood protection 

(SJRWMD, 2012). The Upper St. Johns River Basin (USJRB) acts as the headwaters of the SJR and has 

an area of approximately 4530 km2. This Basin is mainly comprised of marsh and agricultural land 

with multiple storage areas used for flood control and environmental management. Additionally, 

there are multiple flood control projects within the area which include flood levees and water control 

structures. The Middle St. Johns River Basin (MSJRB) is downstream of the USJRB and encompasses 

approximately 3100 km2. It includes a variety of natural land types, but a majority of the basin is 

comprised of highly urbanized areas. For this study, a majority of the USJRB and portion of the 

MSJRB was simulated. The model domain covers roughly 5200 km2 with a rain gauge density of 

approximately 217 km2/gauge. The watershed was divided into multiple sub-basins, delineated 

previously by the U.S. Army Corps of Engineers (USACE) and SJRWMD. Figure 1 shows the model 

domain with sub-basin delineation and available rain gauge locations.  Gauges are maintained by 

the United States Geological Survey (USGS), USACE, South Florida Water Management District 

(SFWMD) and SJRWMD. 
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Figure 1. Study area of the Upper St. Johns River, Florida USA 

 

2.1. HEC-HMS Model 

The HEC-HMS version 3.5 hydrologic modeling platform simulates precipitation-runoff 

processes for a wide range of geographic areas and a variety of watershed sizes. HEC-HMS simulates 

natural and controlled hydrologic conditions in watershed systems and simulates precipitation-

runoff processes [14]. HEC-HMS has the ability to perform multiple computations for runoff 

processes including: runoff volume including infiltration and impervious percentage, direct runoff, 

baseflow, and channel flow. Hydrologic elements (includes sub-basin, reach, reservoir, junction, 

diversion, source, and sink) are used within HEC-HMS to represent the physical processes of a 

watershed with one or more mathematical model available for computational purposes. HEC-HMS 

also has the capability to model water-control facilities, including diversions, reservoirs, and 

detentions, which may include control structures or outlet works.  Meteorologic conditions over a 

watershed can be specified by using precipitation and evapo-transpiration input data. The HEC-HMS 

modeling platform allows the Upper and Middle St. Johns River Basins hydrologic processes to be 

simulated using one large-scale model with adequate detail to determine the changes in runoff 

processes due to variations in the precipitation input conditions.   

The category of mathematical modeling chosen for this study was an event based, lumped-

parameter model. HEC-HMS computes outflow by subtracting the losses, transforming excess 

precipitation, and adding baseflow to the precipitation data that is applied to each sub-basin. The 
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USDA Soil Conservation Services (SCS) Curve Number Method [22] was selected as the Loss Method 

for calculation of the infiltration of each sub-basin element. The SCS runoff equation is an empirical 

model that was developed for estimating runoff potential from the rainfall event based on the 

relationship between soil type, land use and antecedent soil conditions. The retention parameter, or 

Curve Number, was estimated using the Florida Land Use and Cover Classification System 

(FLUCCS) [23] and state soil geographic (STATSGO) database information. The SCS unit hydrograph 

Transform Method was used to compute the resulting surface runoff hydrograph based on calculated 

lag time. The Baseflow Method represents the runoff of prior precipitation and subsurface volumes 

for each sub-basin and the constant monthly baseflow method was selected.  

The channel network is created through the use of reach elements, which are used to represent 

the main flow-way of the St. Johns River. The Muskingum-Cunge Routing Method, which is based 

on the conservation of mass and the diffusion representation of the conservation of momentum, was 

used to represent overland flow within the reach elements.  In relation to the St. Johns River, one of 

the largest issues with routing is properly modeling the flood plain storage. According to HEC-HMS, 

flood flows through extremely flat and wide flood plains may not be modeled adequately as one-

dimensional flow [24]. To overcome the potential overestimation in flow due to inadequate modeling 

of storage availability, a loss method was used in areas known to have low runoff potential, surface 

water withdrawals, and recharge rates.  

Four simulation periods in the years between 2007 and 2011 were used for calibration and 

validation of the model, each representing a different rainfall return frequency. The calibration period 

occurred from August 2008 to October 2008 and represented a return frequency between a 5 to 10 

year-24 hour duration. The validation periods occurred in October 2007, March 2010, and October 

2011 with return frequencies of less than 1 year- 24 hour duration, approximately 1 year- 24 hour 

duration, and between a 10 to 25 year-24 hour duration, respectively. Two sets of daily precipitation 

data were used in the models: rain gauge observations and radar-derived estimates. USGS observed 

gauge measurements occur at multiple different locations within the model. Certain gauge locations 

are at the outlet of sub-basins, thereby representing the area of the upstream sub-basin(s). Any gauges 

located within the flow-way of the SJR would be representative of all sub-basins upstream, thereby 

allowing a large array of spatial scales to be analyzed.  This paper will provide an abbreviated 

summary of the extensive model development and calibration effort herein, but the reader is referred 

to Tancreto [25] for complete details regarding the model. The complete thesis study can be 

downloaded at http://digitalcommons.unf.edu/etd/584/. 

2.2. Precipitation Input to Models 

The SJRWMD and SFWMD each operate a large network of rain gauges in or near the project 

area. A majority of the data has undergone quality assurance procedures, which aids in improving 

the accuracy and reliability of the data. Spatial estimates of precipitation across the entire model 

domain were developed using the Thiessen Polygon method, which defines an individual area of 

influence surrounding each gauge using the application of a Thiessen Polygon network. Each 

polygon is formed by the perpendicular bisectors of the lines joining adjacent gauges and represents 

areas of effective uniform depth. It is assumed that the gauge data, which was collected at a single 

point, is representative of the entire Thiessen Polygon. A common problem with the Thiessen 

Polygon method is having an insufficient number of rain gauges in a network, thereby assuming the 

areal rainfall is spatially homogeneous over large areas.  

Hourly WSR-88D NEXRAD radar data, that has been gauge-adjusted from the network of rain 

gauges within the project area, was obtained from the SJRWMD for this study. The gauge and radar 

data are combined to calculate a gauge-radar ratio, which is applied in a radar calibration algorithm 

to derive a gauge-adjusted rainfall dataset.  Additionally, proprietary geographic information 

system (GIS) algorithms are used to help reduce or eliminate any discontinuities and ground clutter 

from the radar station data [26]. The SJRWMD radar data product is generated at a 2 km pixel 

resolution grid format, which covers the entire project area. The data was aggregated to a daily time 

step to ensure consistent temporal scaling across precipitation input types.  
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Both precipitation input types required preprocessing in order to be used within HEC-HMS due 

to the various models selected to compute runoff processes being lumped in nature. The precipitation 

method selected in HEC-HMS was the Gauge Weights method, which uses separate parameter data 

for each gauge and for each sub-basin in the model. The ArcGIS 10.1 software [27] was used to 

compute the Thiessen polygons and the relative area of each sub-basin (from the sub-basin shape file) 

within each polygon. 

2.3. Comparison of precipitation measurements 

The quality of the radar-rainfall measurements, although continuously advancing, remains 

largely unknown. It is important to distinguish the relationship between the precipitation datasets, 

as they have a direct impact on hydrologic modeling results. Because the comparison of precipitation 

input in hydrologic simulation is the main objective of the research, the degree of similarity between 

the rainfall datasets must be analyzed. Comparative statistics will aid in understanding the potential 

differences in precipitation values, quality of the radar data, and the overall bias of radar generated 

rainfall compared to rain gauge rainfall quantities. The two statistical measures employed are the 

bias (B) and root mean square difference (RMSD), as utilized in several studies [11, 9, 4].  The 

estimation bias (B) is the ratio of the total difference in precipitation between the radar total and rain 

gauge total to the rain gauge total, as seen in Equation 1.  

 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝐵𝑖𝑎𝑠 (𝐵) (%) =
𝑅𝑎𝑑𝑎𝑟𝑇𝑜𝑡𝑎𝑙−𝐺𝑎𝑢𝑔𝑒𝑇𝑜𝑡𝑎𝑙 

𝐺𝑎𝑢𝑔𝑒𝑇𝑜𝑡𝑎𝑙
∗ 100         (1) 

 

The RMSD was calculated to determine the degree of deviation or difference between the radar 

data predicted to the gauge value, which was actually observed. The RMSD represents the standard 

deviation of the differences between the predicted radar data and the observed gauge data.  It is 

used to evaluate the goodness of fit for the study rain gauge and NEXRAD data. The RMSD equation 

can be seen below in Equation 2.  

 

   𝑅𝑀𝑆𝐷 = √
1

𝑛
∑ (𝑅𝑖 − 𝐺𝑖)2𝑖=𝑛

𝑖=1               (2) 

Where: 

Gi and Ri represent the ith day precipitation rate of gauge and radar, respectively 

n is the sample size of radar and gauge pairs 

 

In previous studies, radar estimates are compared with the corresponding gauge observations 

[11, 6, 12].  Comparative statistics are normally performed for the radar pixels (one grid) that contain 

gauges. As discussed earlier, the NEXRAD data processing uses the gauge observations to adjust, 

correct, and sometimes replace radar estimates.  This causes a lack of independence between the two 

sets of estimates at these locations [11]. Therefore, a direct comparison of the 2 by 2 km grid at the 

corresponding rain gauge data (point data) location may not provide an adequate representation of 

bias present within the dataset. To quantify the amount of total bias present between the datasets, 

precipitation inputs of particular sub-basins were chosen as the comparative sampling locations. 

Additionally, distance measurements were computed from the rain gauge location to the centroid of 

the sub-basin. This was important because as stated above, bias between the gauge and radar data 

may be reduced (through radar-gauge correction) at locations close to the gauges. For this reason, the 

distance was used to determine if the calculated biases were influenced by gauge location through 

the use of the coefficient of determination. It was not the purpose of this comparison to examine, in 

full detail, the accuracy of the NEXRAD data provided, but to provide insight on the bias that may 

be present when performing simulations. The sub-basin rainfall data chosen for comparison are 

believed to be representative of the entire basin as they are located throughout the modeled area.   

Table 1 illustrates that for seven representative sub-basin rainfall measurements, the total 

percent bias can range from -36.1% to 53.3%. The average overall bias for 2007 and 2008 were the 
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greatest at 16% and 9%, respectively. The average bias of 2010 and 2011 was close to zero. This may 

be due to the fact that radar estimation accuracy has been continuously increasing over the past few 

years, resulting in higher quality radar data. The higher values of bias indicate that significant 

random differences may exist between the radar estimates and the corresponding gauge 

measurements for many of the sub-basins within the model. Additionally, a majority of the sub-

basins show a positive bias which indicates that the NEXRAD data may be overestimating rainfall 

compared to the corresponding gauge. The total bias was plotted against the distance from the rain 

gauge to the centroid of the sub-basin. Linear regression was performed and the associated coefficient 

of determination ranged from 0.13 to 0.45. Therefore, no strong correlation can be detected regarding 

total bias in terms of distance from the rain gauge. 

Table 1. Total Bias and RMSD between rain gauge and NEXRAD precipitation values. 

 
 

The RMSD values help quantify the random differences between the data sets to show the 

magnitude of error. As can be seen from Table 1, error up to 12.7 mm was calculated. This error can 

cause significant implications in hydrologic runoff calculations due to the undesired over- or under-

estimation of rainfall amounts.  

The comparative statistical tests show that bias and error can occur between the radar and rain 

gauge data sets. The model calibration process largely acts to correct this error or bias in precipitation 

data via parameter adjustment [13]. Many studies discuss the importance of model recalibration 

when switching precipitation products [28, 11, 2, 13]. Therefore, minor recalibration of the model was 

performed to ensure the model parameters are acceptable in order to produce the best possible 

hydrologic simulation results for each product. 

2.4. Model calibration and validation 

The HEC-HMS model was calibrated and validated using existing observed storm events in the 

study area.  The initial calibration of the model was completed using the rain gauge data. Once the 

model was deemed calibrated, the NEXRAD-derived data were input and the model was re-

calibrated. The primary goal of the calibration process is to match the simulation results to the 

observed data as closely as possible. The calibration locations were determined by the available 

discharge data locations available during the calibration timeframe and are shown in Figure 2.    

Table 2 provides a summary of the initial calibration performance of the model using rain gauge 

precipitation input, which was considered highly satisfactory.  Each of the performance goodness-

of-fit statistics are discussed in more detail below.   
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Figure 2. Location of representative calibration points where stream flow data exists. 

 

Table 2. Initial model calibration performance statistics for representative basins. 

Gauge Location r2 NSE 

Fort Drum 

Blue Cypress 
Penneywash 
US 192 

FL 520 
Inlet Lake Harney 

0.89 

0.84 
0.86 
0.88 

0.98 
0.93 

0.85 

0.84 
0.79 
0.86 

0.98 
0.90 

 

After the initial calibration effort was completed, a comparison of calibration and validation 

performance was completed comparing both precipitation input datasets.  Having known discharge 

gauge and simulation data allows a direct comparison to be made to evaluate the performance of the 

model using the two different precipitation input datasets. This comparison was completed using 

two different statistical measures: the coefficient of determination (r2) and the Nash-Sutcliffe 

efficiency coefficient (NSE). These statistics were used to quantitatively compare the hydrologic 

simulation results to determine which precipitation input method yielded the most accurate results 

for the various simulations events. 
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The r2 gives the variance of the data and assesses a goodness of fit at each calibration point for 

the model. The equation for r2 can be seen below in Equation 3. It can help explain the variability of 

the model and how well the model may produce results for future predictions.  The coefficient of 

determination is between 0 and 1, with 1 indicating a perfect fit with all variation explained. 

  

𝑟2 = (
∑ (𝑂𝑖−�̅�)(𝑆𝑖−�̅�)𝑛

𝑖=1

√∑ (𝑂𝑖
𝑛
𝑖=1 −�̅�)2√∑ (𝑆𝑖−�̅�)2𝑛

𝑖=1

)

2

             (3) 

Where: Oi is the observed data on the ith day 

Si is the simulated data on the ith day 

O ̅ and S ̅ is the observed and simulated mean values, respectively 

n is the number of observations 

 

The NSE [29] is a normalized statistic that determines the relative magnitude of the residual 

variance compared to the measured data variance and indicates how well the plot of the observed 

data versus the simulated data fits the 1:1 line [30]. The NSE equation can be seen below in Equation 

4. 

 

𝑁𝑆𝐸 = 1 −  
∑ (𝑂𝑖−𝑆𝑖)2𝑛

𝑖=1

∑ (𝑂𝑖−�̅�)2𝑛
𝑖=1

                 (4) 

Where: Oi is the observed data on the ith day 

Si is the simulated data on the ith day 

O ̅ is the observed mean value 

n is the number of observations 

 

The ranges for NSE can vary between -∞ to 1, where: NSE=1 corresponds to a perfect match 

between discharge data and observed data; NSE=0 shows that the model predictions are as accurate 

as the mean of the observed data; and -∞<NSE<0 occurs when the observed mean is a better predictor 

than the model, which indicates unacceptable performance [30]. The St. Johns River Water Supply 

Impact Study [20] used the Nash-Sutcliffe statistic to explain the calibration performance for their 

hydraulic model. Following similar methodology, the NSE values will be divided into intervals 

which explain performance rating. The intervals are as follows: 0.75 < NSE < 1 is a “very good” 

performance rating, 0.65 < NSE < 0.75 is a “good” performance rating, 0.50 < NSE < 0.65 is a 

“satisfactory” performance rating, and NSE < 0.50 is an “unsatisfactory” performance rating.  

The Wilcoxon signed-rank test is a nonparametric test of hypothesis used to determine whether 

there is a significant difference between the medians of two related groups. It is an analysis that is 

useful to determine if the population median-ranks differ between measurements that are repeated, 

also known as a paired difference test. The calculation of the Wilcoxon signed-rank test involves a W 

test statistic, whose distribution under the null hypothesis (distributions between the pairs are equal) 

is known. Using the test statistic W, a z-score and p-value can be calculated. If the p-value calculated 

is less than the significance level (α), then the groups are statistically significant and different with 

the null hypothesis rejected. The selected significance level for all tests was chosen as 0.05. This test 

was used to determine if the resulting NSE and r2 between the groups of data were statistically 

significant, that is, there is a distinct difference between the NEXRAD-generated and rain gauge-

generated simulation results.  If the null hypothesis is rejected then the simulation results are 

unlikely to have occurred by chance and the simulation results from each precipitation input type do 

indeed differ. 
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3. Results 

3.1. Simulation results at different rainfall return frequencies 

The four simulation runs, representing the different rainfall return frequencies, were completed 

using two different rainfall input types. The final statistical results are presented on a per simulation 

basis, with a comparative framework designed to determine which precipitation input yielded more 

accurate results. The r2 and NSE values for each precipitation input type for the model calibration 

and validation periods are shown below in Table 3 and Table 4, respectively.    

The model performance measures during the 2008 calibration period show a strong agreement 

between the simulated and observed streamflow data, with a high level of accuracy, as can be inferred 

from the high r2 and NSE values. Outcomes of the two statistical tests were compared using the 

Wilcoxon signed-rank test for the two precipitation input types. The Wilcoxon signed-rank test 

determined that the distributions between the two groups did not differ significantly (W=34.5, z=0.13, 

p=0.917 for r2 and W=325, z=0.297, p=0.797 for NSE). Both Wilcoxon sign-rank test p values suggest 

that there is no significant improvement of simulated streamflow values when using the NEXRAD 

data as compared to the rain gauge data. 

The validation performance results for the October 2007 simulation event differ significantly 

depending on the discharge location, with a majority of locations showing relatively low performance 

values.  The NEXRAD r2 values were compared against the rain gauge r2 values to determine 

improvement or decline. The median r2 values were calculated as 0.53 and 0.7 for the rain gauge and 

NEXRAD data, respectively, which is a favorable increase in performance. . The Wilcoxon signed-

rank test calculated W value was 55 and a p value of 0.233 was determined, thus the null hypothesis 

can only be rejected at an alpha value of 0.23, which is higher than the specific alpha value of 0.05. 

Many of the locations had little to no correlation (negative values), as determined by the NSE results, 

when using rain gauge data as the precipitation input method. The use of the NEXRAD data allowed 

significant improvement at ten USGS discharge gage locations. The median values for the NSE values 

were -0.06 and 0.53 for the rain gauge and NEXRAD data, respectively. For the NSE results, the 

calculated W value was 81 with a p-value of 0.01. This shows that a statistically significant difference 

of median is present at the alpha level of 0.05. Therefore, from the results it can be inferred that the 

NEXRAD calibrated data simulations estimate flow more accurately than the rain gauge simulations 

for rainfall return frequencies less than 1 year at a duration of 24 hours. 

The 2010 and 2011 validation performance results show a strong relationship between the 

simulated and observed streamflow data for both precipitation input types. The r2 and NSE values 

are relatively close to one for a majority of the locations. An interesting observation made during the 

2010 and 2011 validation effort was that minimal recalibration of model was needed between 

precipitation input types. The Wilcoxon signed-rank test determined that there is no significant 

improvement of streamflow values using the NEXRAD data over the rain gauge data for both 

validation events. 
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Table 3. Coefficient of determination simulation results. 

 

 

Table 4. Nash-Sutcliffe efficiency coefficient simulation results. 

 

 

3.2. Simulation results at different spatial scales 

The model performance measures were compared across simulation events for both individual 

sub-basins and at locations downstream of multiple sub-basins. The purpose of this analysis was to 

determine if, at certain sub-basin sizes, the NSE or r2 values would show improvement during the 

various simulation runs. To determine if NEXRAD data input produced more accurate results at 
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particular sub-basin scales, the r2 and NSE performance evaluations for all simulations were 

compared using the Wilcoxon signed-rank test. The r2 and NSE values were compared across all 

simulations events at the three sub-basin size groupings; small (less than 250 km2), medium (250 km2< 

x <1000 km2), and large (over 1000 km2). The p value for the r2 and NSE comparison for the small sub-

basins were 0.002 and 0.0002, respectively.  Due to the p values, difference in computed median 

values, and previously computed improvement of r2 and NSE results, it was inferred that at smaller 

sub-basin sizes the NEXRAD data performs better. For the medium sized sub-basins a p value of 

0.818 for r2 and 0.719 for NSE were computed. Since the p values are much higher than the 

significance level of 0.05 or 5%, the null hypothesis cannot be rejected. There is no statistical 

significance suggesting that the distributions between the datasets are different, and thus the 

NEXRAD data input does not improve r2 and NSE values at the medium sub-basin size.   For the 

large sized sub-basins, the p value for the comparison of r2 and NSE values were 0.003 and 0.05, 

respectively.  Since the p value for NSE comparison is equal to the significance level, the null 

hypothesis should not be rejected. This p value is very close to rejecting the null hypothesis thus 

suggesting that the rain gauge data may produce more accurate results than the NEXRAD data. The 

p value, higher median value, and previously determined decline in results when using NEXRAD 

data would suggest that rain gauge data produces more accurate results at the large sub-basin scale. 

4. Discussion 

In this paper, a comparison of HEC-HMS hydrologic simulation performance using rain gauge 

and NEXRAD precipitation input at varying spatial scales and rainfall return frequencies for a large 

sub-tropical watershed with minimal topographic drive. In addition to the comparative model 

performance analysis, total bias between NEXRAD and rain gauge data within the study location 

was investigated. Precipitation measurements arguably have the most critical influence on the model 

performance, thus the need for quality data input is apparent. Comparing hydrologic simulation 

results using radar and rain gauge input aids in identifying the thresholds for maximum gain when 

using the more cumbersome, but finer-resolution radar data. This research provided guidance for 

both spatial scale and rainfall return frequency scenarios for which the use of radar data would yield 

more accurate hydrologic results. 

 Calibration and validation of a HEC-HMS hydrologic model of the Upper and Middle St. 

Johns River Basins was completed for four storm simulation periods, each representing a different 

rainfall return frequency. The HEC-HMS model was first calibrated using precipitation data from 

rain gauges located within or near the watershed boundary. As an alternative precipitation input 

source, NEXRAD data was obtained. Rain gauge and NEXRAD precipitation estimates were 

compared at seven locations within the model domain. The evaluation showed that NEXRAD total 

precipitation was greater than gauge total precipitation for a majority of the sub-basins, and 

recalibration between precipitation inputs was necessary. 

Model performance was evaluated both visually and statistically against observed hydrograph 

data from USGS. The model performance measures, Nash–Sutcliffe efficiency (NSE) and coefficient 

of determination (r2), were used to quantitatively compare the NEXRAD and rain gauge hydrologic 

simulations to the observed USGS discharge data. Additionally, a statistical hypothesis test, the 

Wilcoxon Signed-Rank Test, was used to evaluate the difference in model performance results for the 

two precipitation input types. Overall, the calculated NSE and r2 values for the 2008, 2010, and 2011 

simulations were similar and very promising (majority were > 0.75), indicating the model predicts 

streamflow values with a high level of accuracy for both NEXRAD and rain gauge data input. The 

Wilcoxon Signed-Rank Test results confirm that no significant improvement or decline in model 

streamflow accuracy is present when using NEXRAD data input for rainfall return frequencies of 

approximately 1 year-24 hour duration and greater. For the 2007 event, the NEXRAD precipitation 

data performed better than the rain gauge data at predicting the magnitude and timing of the peak, 

as reflected in the higher r2 and NSE values. A statistically significant difference of median is present 

(at the alpha level of 0.05). Thus, the NEXRAD data were shown to produce more accurate streamflow 

simulation results for rainfall return frequencies less than 1 year-24 hour duration. The model 
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performance measures were compared across simulation events at multiple spatial scales. NEXRAD 

data produced more accurate simulated streamflow values for the small sub-basin or watershed areas 

(less than 250 km2); neither NEXRAD nor rain gauge results show consistent improvement or decline 

in accuracy of the streamflow values for the medium sized sub-basin or watershed areas (250 km2< x 

<1000 km2); and rain gauge data produced more accurate simulated streamflow values for the large 

sub-basin or watershed areas (over 1000 km2).  The difference in median for the small and large sub-

basin performance statistics were statistically significant.  

The results of this study suggest that at small spatial scales and low return frequencies, NEXRAD 

data may produce more accurate streamflow estimations. Given that the performance of radar data 

in this study, it may be inferred that the spatial averaging of rain gauge Thiessen polygon data 

provides similar or more accurate rainfall estimations for large spatial scales and higher rainfall 

frequencies. This could be an indication of the spatial resolution of the rain gauges not capturing the 

spatial variability of smaller storm systems, which may be more convective in nature. Additionally, 

smaller spatial scales show a high level of sensitivity to rainfall input, thus the need for the higher 

spatial resolution of the NEXRAD data.  It is important to note that the results of this study are 

conditioned on the modeling platform and precipitation data used. Many important factors should 

be analyzed before a precipitation input is selected such as; the spatial and temporal scale of the 

model, rain gauge data availability (coverage), quality of radar data, rainfall event, and model 

structure and spatial discretization. The conclusions of this study are not comprehensive of all 

watersheds, and thus care should be taken when assessing the results of this study for use in future 

modeling efforts. Further research should concentrate on identifying the rainfall return frequency 

threshold for which NEXRAD data may provide more accurate results for varying temporal scales. 

All simulation periods analyzed in this research were for a daily time period, over a relatively short 

duration. Introducing radar data at the hourly time scale may further improve model performance 

statistics, thus suggesting improvement of NEXRAD simulation results at certain return frequencies.  

Additionally, further research on model spatial discretization and its relation to streamflow accuracy 

at different spatial scales is needed. Due to the relative size of the model domain, the spatial 

discretization was relatively coarse for this project. Therefore, a full range of model benefits, 

including improvements in model accuracy, may not have been realized. 

In summary, this study has clearly demonstrated that automatically using a larger and more 

complex precipitation input dataset is not justified in flatter, sub-tropical watersheds.  In the future, 

it would be advisable for model developers to carefully consider the benefits of using more 

complicated and costly model inputs if the resulting benefits are negligible.    
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