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Abstract: The objective of this study is to compare univariate and joint bivariate return periods of 13 

extreme precipitation that all rely on different probability concepts in selected meteorological 14 
stations of Cyprus. Pairs of maximum rainfall depths with corresponding durations are estimated 15 
and compared using annual maximum series (AMS) for the complete period of the analysis and 30-16 
year subsets for selected data periods. Marginal distributions of extreme precipitation are examined 17 
and used for the estimation of typical design periods. The dependence between extreme rainfall and 18 
duration is then assessed by an exploratory data analysis using K-plots and Chi-plots, and the 19 
consistency of their relationship is quantified by Kendall’s correlation coefficient. Copulas from 20 
Archimedean, Elliptical and Extreme Value families are fitted using a pseudo-likelihood estimation 21 
method, evaluated according to the corrected Akaike Information Criterion and verified using both 22 
graphical approaches and a goodness-of-fit test based on the Cramér-von Mises statistic. The 23 
selected copula functions and the corresponding conditional and joint return periods are calculated 24 
and the results are compared with the marginal univariate estimations of each variable. Results 25 
highlight the effect of sample size on univariate and bivariate rainfall frequency analysis for 26 
hydraulic engineering design practices. 27 
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1. Introduction 32 

Rainfall frequency analysis is an important area of hydraulic engineering design, water 33 
resources planning and management. This involves the selection of the variables of interest, the 34 
sampling of a sample series and the choice of the most appropriate population distribution. Analysis 35 
of extreme rainfall events has conventionally been performed by prespecifying rainfall duration as a 36 
filter to abstract annual maximum rainfall depths as the only variable for analysis. However, this 37 
univariate approach does not account for dependence between rainfall properties. Rainfall 38 
characteristics, such as total depth, duration, and peak intensity exhibit high variability and a 39 
multivariate approach should be studied for extreme rainfall analysis.  40 

The interdependency of extreme rainfall characteristics urged scientists and water managers to 41 
derive a joint law in order to successfully describe the main characteristics of the observed 42 
hydrological events. The first bivariate frequency distributions were generated based to the 43 
hypothesis that the variables of interest either have the same marginal probability distribution, or 44 
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that their joint relationship is normally distributed (or become normally distributed after a 45 
transformation) [1]. In recent years, several studies were focused in finding a method which would 46 
assess in the investigation of the statistical behavior of dependent hydrological variables, without the 47 
need of the assumptions that classical bivariate frequency distributions use. The first paper on 48 
copulas in hydrology was published by De Michele and Salvadori [2], and in the next few years, 49 
several other studies further expanded the theory, such as Favre et al. [3]; Salvadori and De Michele 50 
[4], Salvadori and De Michele [5] and Genest and Favre [6].   51 

The main concept of the copula approach is that a joint distribution function can be divided into 52 
two independent parts, the one describing the marginal-univariate behavior and the other the 53 
dependence structure [7,8]. Copulas are the functions that describe the dependence between random 54 
variables and as a result, are able to couple the marginals of these variables into their joint distribution 55 
function [9]. The importance of this approach in the field of engineering and water science is 56 
noticeable. Copula method offers an efficient way in finding reasonable multivariate estimates for 57 
hydrological events that have a certain likelihood of occurrence. These estimates are used as design 58 
variables of the hydraulic structures. Design variables are characterized by a return period 59 
(recurrence interval) defined as the average time elapsing between two successive realizations of an 60 
event whose magnitude exceeds a defined threshold [10,11]. In practice, the selection of a reliable 61 
return period is crucial as it is the fundamental parameter in the design of hydraulic structures.   62 

To analyse extreme rainfall events and the effect of sample size on rainfall frequency results, a 63 
bivariate analysis is conducted in this study using daily precipitation data from selected 64 
meteorological stations in Cyprus. Samples of extreme rainfall events are chosen (using annual 65 
maximum rainfall depth with corresponding storm durations) and analyzed using copulas to 66 
describe the dependence structures between rainfall variables and to construct their joint distribution 67 
for extreme rainfall events. With the marginal distributions selected according to the methodology of 68 
traditional univariate analysis using two different types of extreme rainfall series, a set of copula 69 
based bivariate distributions for rainfall peak–storm duration are determined and compared for 70 
selected design return periods.  71 

2. Study Area and Rainfall Database 72 

During the last century remarkable variations and trends were observed in precipitation. 73 
Pashiardis [12] published a comprehensive study of rainfall extremes presenting rainfall intensity – 74 
duration – frequency (IDF) distribution curves for Cyprus. According to this study, the curves for the 75 
period 1971-2007 are more intense and extreme than the curves developed in an earlier study for the 76 
period 1931-1970 [13]. The average precipitation of 541 mm in the period 1901 to 1970 dropped to 463 77 
in the period 1971 to 2009 [12]. Analysis of precipitation data for Cyprus led to the conclusion that 78 
the mean annual rainfall is decreasing whilst the rainfall intensity of extreme events is increasing. 79 
Hence, this study‘s primary objective is the application of the copula method and the evaluation of 80 
its results to extreme rainfall. To that end, approaches to specify the marginal distribution functions 81 
for the study rainfall characteristics (rainfall depth and storm duration) are initially applied.  82 

Daily rainfall data for 90 years (October 1920 – September 2010) were obtained for three 83 
meteorological stations (Limassol, Larnaca and Nicosia) located in the wider area of Cyprus from the 84 
European Climate Assessment and Dataset (ECA&D, www.ecad.eu). The sample size of rainfall 85 
extreme characteristics can be a major uncertainty factor when dealing with the estimation of rainfall 86 
design values. As a general rule, small sized samples cannot correctly interpret the statistical 87 
properties of the population distribution. Hence, in order to evaluate the uncertainty of return period 88 
estimation in copula method when small data samples are used, each of the 90 years length time-89 
series were divided into 3 sub-datasets and return periods for both univariate and bivariate models 90 
were calculated. The 100 and 500 years return periods were selected for comparison, as they are often 91 
used as design variables in the construction of hydraulic structures. 92 

 93 
 94 
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3. Methodology 95 

This study‘s primary objective is the application of the copula method and the evaluation of its 96 
results. Figure 1 presents the flow diagam of the methodology and shows the steps for rainfall 97 
frequency analysis to the three meteorological stations. The first step is the return period estimation  98 
for each variable (depth and storm duration) based on the typical univariate approach. Then, the 99 
dependence between the two variables of interest is assessed. This could be done either by visualizing 100 
dependence or by the performance of statistical tests. The Chi-plot and K-plot are the most common 101 
graphical tools for detecting dependence. The statistical tests of dependence were performed by 102 
computing Kendall‘s correlation coefficient (Kendall’s tau) and both graphical methods were taken 103 
into consideration for better visualization of the results. 104 
 105 

  106 

Figure 1. Flow diagram of the methodology.  107 

After the dependence between the variables was evaluated, copulas from three different families 108 
were selected as candidate models. In the present work we considered only bivariate distributions 109 
and made use of Archimedean (Gumbel–Hougaard, Clayton, Frank and Joe), extreme value 110 
(Gumbel–Hougaard and Tawn) and elliptical (Normal or Gaussian) models. The maximization of the 111 
pseudolikelihood, a generally applicable method which does not have limitations regarding the 112 
dependence parameter, was selected for estimating the model’s parameters for this study. The 113 
exclusion of non-admissible copulas was based to Cramér-von Mises statistic test, computed using a 114 
bootstrap procedure as described in Genest et al. [14]. Graphical tests for a visual description of the 115 
copula fitting and complementary analysis were also used. Finally, the (corrected) Akaike 116 
Information Criterion (AIC) [15,16] among the non-rejected copulas determined the most appropriate 117 
model.  118 

After the choice of the most efficient copula model, the bivariate distributions needed to be 119 
constructed. A copula is a joint distribution function of standard uniform random variables able to 120 
connect univariate marginal distribution functions with the multivariate probability distribution, as 121 
stated in Sklar Theorem [9]: 122 

 Let FXY be a joint distribution function with marginals FX and FY . Then there exists a copula C 123 
such that : 124 

FXY (x, y) = C(FX (x), FY (y)) ,                               (1) 125 

for all reals x, y. If FX , FY are continuous, then C is unique; otherwise, C is uniquely defined on Range 126 
( FX ) × Range ( FY ). Conversely, if C is a copula and FX, FY are distribution functions, then FXY given 127 
by Eq. (1) is a joint distribution function with marginals FX and FY.  128 

After modeling the bivariate distribution the copula based return periods were computed. In 129 
this study the bivariate joint (primary) return periods called OR operator “∨” (union of events - wither 130 
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of the variables u and v exceed the defined thresholds-) and AND operator “∧” (intersection of events 131 
–both of the variables u and v exceed the defined thresholds) [5,10], were computed and are defined 132 
as:                           133 

𝑇𝑢,𝑣
𝑂𝑅 = 

𝜇

1−𝐶𝑢,𝑣(𝑢,𝑣)
,                                   (2)                                     134 

𝑇𝑢,𝑣
𝐴𝑁𝐷 = 

𝜇

1−𝑢−𝑣+𝐶𝑢,𝑣(𝑢,𝑣)
,                               (3)                                  135 

where u and v follow a uniform distribution U(0,1). The U denotes FX(X) and V denotes FY(Y) and 136 
were constructed after applying the probability integral transform to X and Y, a transformation which 137 
allowed us to simplify our work by using an equivalent set of values which follow the standard 138 
uniform distribution. 139 

In comparison to the univariate return periods, the joint bivariate estimates are not unique, but 140 
instead, they have infinite combinations of values, described with the level curve. All pairs (u, v) that 141 
lie on the same level curve of the copula have the same return period T(p), however, these 142 
combinations of values for u and v have various probabilities of occurrence and can have significant 143 
differences from one another. For the purposes of the present study the most-likely design realization 144 
method [17], was used to select a unique return period. This method introduces a weighting function 145 
which specifies the point over the critical layer with the greatest value of the joint probability density 146 
function fxy. It is also known as “typical” critical realization, and is described with the following 147 
equation: 148 

 (𝑢, 𝑣) = 𝑎𝑟𝑔𝑚𝑎𝑥⏟    
𝐶(𝑢,𝑣)=𝑡

𝑓𝑋𝑌( 𝐹𝑥
−1(𝑢), 𝐹𝑌

−1(𝑣)),                          (4) 149 

where u and v depict the converted via the probability integral transform realizations of the marginal 150 
distributions FX and FY of the random variables X and Y. After the identification of the maximization 151 
point, the pair (u,v) was used in order for the exceedance probability to be calculated. As a final step, 152 
a comparison of the different return periods coming from univariate and bivariate analysis was 153 
performed in order to investigate the results of the copula method.  154 

4. Results 155 

4.1 Univariate Analysis   156 

After the selection of extreme events, a univariate rainfall frequency analysis was performed for 157 
annual maximum rainfall depths and corresponding storm durations. Different probability models 158 
such as Generalized Extreme Values (GEV), Gumbel (EVI) and Generalized Pareto Distribution 159 
(GPD) for peak discharge and GEV, Gamma, Exponential, and Log-normal were applied to the 160 
datasets. The distribution‘s parameters were estimated with the help of maximum likelihood method, 161 
a method which will be as well used in copula‘s parameters estimation process [18]. Subsequently, 162 
the Kolmogorov-Smirnov Goodness-of-Fit and graphical tests were produced to select the 163 
distributions that produced an adequate fit to the data and finally, AIC [15] values among the non-164 
rejected copulas determined the most appropriate statistical model. In conclusion, the generalized 165 
extreme value distribution (GEV) was selected for modelling annual maximum rainfall depth and 166 
storm duration. Table 1 presents the results of the univariate approach for Limassol meteorological 167 
station for the complete period of analysis and for the three subperiods. Finally, when the appropriate 168 
model was selected, the univariate return periods were calculated for 2, 5, 10, 25, 50, 100, 200 and 500 169 
years.   170 

  171 
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Table 1. Results of univariate and bivariate approaches for annual maximum rainfall depths and 172 
corresponding storm durations for the complete data period and the 3 sub-periods of Larnaka Station.  173 

 174 

4.2 Bivariate Analysis   175 

After the univariate analysis was performed, a formal assessment of the dependence between 176 
the pairs of the considered variables was tested with the help of Kendall correlation coefficient. 177 
Histograms and a scatterplot of the Rainfall Depth (X) - Duration (Y) pair are presented in Figure 2a, 178 
in which a weak correlation between the two variables can be easily noticed. In the next step, the 179 
different copulas from the three families were fitted to X-Y pair. The parameters of the copulas were 180 
estimated with the maximum pseudolikelihood method and the considered functions were 181 
compared with different goodness-of-fit tests. Table 1 shows the best copulas selected for Larnaca 182 
meteorological station for all sample periods. For example, for the complete period of analysis (1920-183 
2010) the Gaussian copula with parameter = 0.54 was selected for the AMS sample, as it had the lowest 184 
AIC value, and at the same time had an adequate fit. The statistical test p-value was 0.18 for the 185 
bootstrapped p-value of the goodness-of-fit test using the Cramer-von Mises statistic (95% 186 
significance level). Furthermore, Figure 2b shows the graphical tests of the selected copulas for a 187 
sample size of 1000 simulations for the X-Y pair (Rainfall Depth-Duration). The Kendall‘s tau 188 
extracted from the comparison between observed and simulated values was 0.36 for the copula and 189 
0.35 for the actual data, indicating that the correlation of the real data was preserved in the copula. 190 
Similar results are observed for the other sub-periods and the other two meteorological stations 191 
(Larnaca and Nicosia). It should be mentioned that in these two stations lower correlations are 192 
observed between annual maximum rainfall depth and corresponding storm durations (Figure 2). 193 

After copula selection, the bivariate distribution function was constructed and the selected 194 
marginals were taken into consideration. Figure 3 illustrates the level curves for the bivariate return 195 
periods for Limassol station and the complete data period of 90 years and Table 2 shows the derived 196 
joint return (primary) periods for the OR (union) and AND (intersection) cases, constructed following 197 
the Equations 2 and 3, and the most likely realization method as described in Equation 4. The TOR and 198 
TAND joint return periods express the possible conditions of failure in case of having two variables 199 
which are considered important for design purposes. To be more comprehensive, the variables of 200 
interest can either work together or simultaneously in order to cause failure. In case that the condition 201 
of failure is met when either or both rainfall depth (X) and rainfall duration (Y) variables exceed their 202 
threshold, the cooperative risk TOR should be taken into consideration. On the other hand, in case that 203 
failure occurs when both X and Y variables exceed their threshold simultaneously (or dually), the 204 
dual return period TAND needs to be calculated. The calculation of the two different joint return period 205 
cases is important as if the two variables X and Y can cooperate (OR case) then the marginal 206 
probabilities must be considerably higher.  207 

    208 
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 210 

(a)                                            (b) 211 

Figure 2. a. A scatterplot matrix of the selected variables and their Kendall correlation coefficient for 212 
the study meteorological stations; b. Comparison between the observed and simulated values (sample 213 
size 1 000) (Rainfall Depth-Duration) for Frank (Larnaca) and Gaussian (Limassol, Nicosia) copulas 214 
for 1000 simulations, indicating an adequate fit between the simulating and observed values.  215 

 216 

Table 2. Results of the Bivariate Return Periods 2, 5, 10, 25, 50, 100, 200 and 500 for Rainfall Depth and 217 
Storm Duration – Limassol meteorological station.  218 

 219 
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Figure 3. Level curves for the bivariate return periods, white for cooperative risk TOR and black for 221 
dual risk TAND. The color range changes as the probability reaches from 0 to 1. U denotes FX(X) which 222 
represents the random variable from the marginal distribution of the rainfall depth values and V 223 
denotes FY(Y) which represents the random variable from the marginal distribution of the storm 224 
duration values. Each of the lines refer to a specific return period and the values on the two axis are 225 
equivalent to the probabilities of occurrence of the random variables X (annual maximum rainfall 226 
depths) and Y (corresponding storm durations), respectively.  227 

The analysis of the samples at Limassol meteorological station showed that GEV distribution is 228 
the most appropriate for modeling both duration and rainfall depth. The parameters of the fitted 229 
distributions had differences from one another, and at the same time, Kendall‘s correlation coefficient 230 
indicated that the last thirty years had much stronger correlation (0.59) than the others 231 
(approximately 0.30). The copula models used were different in every sample and can be seen in 232 
Table 1. The return periods (not shown due to paper length limitations), have relatively small 233 
differences in the 100yrs return period, whereas in the 500yrs period there were differences in AND 234 
and OR cases, with values ranging from 9.94 to 25.05 and 21.74 to 40.05, respectively. 235 

4. Concluding Remarks 236 

In the present study, a bivariate rainfall frequency analysis is performed using an extensive 237 
selection of bivariate copulas, as well as different statistical and graphical tests. Annual Maximum 238 
Series are followed in order to collect the data samples and then, the corresponding univariate and 239 
bivariate return periods are evaluated and compared. In total, the return periods obtained are in 240 
consensus with Salvadori et al. [5] who showed that the relationship between univariate and primary 241 
(bivariate) return periods can be written as TOR < TUNI < TAND.  242 

The correlation analysis in the two data samples confirms that a slight dependence exists 243 
between the extreme rainfall characteristics (rainfall depth and duration). It is worth noting that even 244 
though the correlation pattern changed when different samples are selected, the return period 245 
estimates did not have significant differences. In conclusion, the existence of dependence among 246 
hydrological variables, indicate the need for multivariate distributions to be constructed, especially 247 
when dealing with design values. As a result, more studies should be performed in order to 248 
investigate the importance of copula application in rainfall frequency analysis and the effect of 249 
sample size in design return periods. 250 
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