

Analyses of monthly discharges in Slovakia using hydrological exploratory methods

Mária Ďurigová¹, Dominika Ballová² and Kamila Hlavčová^{3,*}

¹ Department of Land and Water Resources Management, Slovak University of Technology, Radlinského 11, 810 05 Bratislava, Slovakia; maria.durigova@stuba.sk

² Department of Mathematics and Descriptive Geometry, Slovak University of Technology, Radlinského 11, 810 05 Bratislava, Slovakia; ballova@math.sk

³ Department of Land and Water Resources Management, Slovak University of Technology, Radlinského 11, 810 05 Bratislava, Slovakia; kamila.hlavcova@stuba.sk

* Correspondence: maria.durigova@stuba.sk

Content

ECWS-3

- Introduction
- Materials and Methods
 - The analysis of the residuals
 - Pettitt's test
 - The analysis of the runoff regime changes by the deviations

water

MDPI

- Results
- Discussion

Introduction

on Water Sciences

ECWS-3

The changes around us due to climate change:

• global warming,

3rd International Electronic Conference

- melting of the glaciers, increasing sea levels,
- more occurrences of extremes in hydrology and meteorology.

Recorded by US satellite Landsat

CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=478900

http://www.teraz.sk/slovensko/predpoved-pocasia-preslovensko-na-uto/263575-clanok.html

Materials and Methods

- Slovakia belongs to the north temperate climate zone.
- The data series used are the mean monthly discharges of 14 stage-discharge gauging stations in Slovakia, all of them were measured from 1931 to 2016.
- The data was provided by the Slovak Hydrometeorological Institute.

Stage-discharge gauging stations	The rivers	Number of station	Catchment area (km²)			
Moravský sv. Ján	Morava	5040	24,129.30			
Čierny Váh	Čierny Váh	5311	243.06			
Podbánské	Belá	5400	93.49			
Dierová	Orava	5880	1,966.75			
Martin	Turiec	6130	827.00			
Kysucké Nové Mesto	Kysuca	6200	955.09			
Bánska Bystrica	Hron	7160	1,766.48			
Brehy	Hron	7290	3,821.38			
Holiša	Ipeľ	7440	685.27			
Lenártovce	Slaná	7820	1,829.65			
Jaklovce	Hnilec	8560	606.32			
Košické Olšany	Torysa	8870	1,298.30			
Hanušovce	Topľa	9500	1,050.03			
Chmelnica	Poprad	8320	1,262.41			

The localization of the 14 stage-discharge gauging stations used in Slovakia.

List of the stage-discharge gauging stations with the numbering and the catchment areas

Materials and Methods

- 1. The analysis of the residuals
- 2. Pettitt's test
- 3. The analysis of the runoff regime changes by the deviations

The change-point tests seek to find abrupt changes in the mean of series based on the ranking of the observations. These tests are a widely used tool in hydrological processes.

The detection of

change-points

Graph 1: The sample of the station with the mean monthy discharges.

Graph 2: The cumulative curve of the residuals with the maximal value (the point with the arrow).

1. The analysis of residuals

- The residuals are calculated as the differences between the mean monthly discharges (*Graph 1*) and the long-term mean monthly discharge.
- These residuals are cumulatively added and are then are plotted on a graph (*Graph 2*). The maximal value of the cumulative curve of the residuals represents the change-point (*point with the arrow in the Graph 2*).

2. Pettitt's test

- It is a widely used tool for detecting change-points in hydrological processes.
- The null hypothesis of this test is that there is no change in the mean of the time series. The alternative hypothesis says that there is a statistically significant change in the series.

The test statistic is defined:

$$\widehat{U} = max|U_k|$$

where U_k is given

$$U_k = 2\sum_{i=1}^{k} r_i - k(n+1)$$

where k=1,2,...,n and r_i are the ranks of the observations X_i . The most probable change-point is located where \hat{U} reaches its maximum value.

3. The analysis of the runoff regime changes by the deviations

- This method deals with the dependence of the runoff regime of each month on the runoff regime of that year.
- The mean annual discharge deviations considering the long-term mean annual discharge (*Formula 3*) and the mean monthly discharge deviations considering the long-term mean monthly discharge (*Formula 4*) were calculated.

$$\Delta_1 = \frac{Q_i - Q}{Q} * 100 \quad (3) \qquad \qquad \Delta_2 = \frac{Q_j - Q_j}{Q_j} * 100 \quad (4)$$

where:

- Δ_1 the deviations of the mean annual discharges from the long-term mean annual discharge,
- Q_i the mean annual discharge for each i-year,
- Q^{-} the long-term mean annual discharge,
- Δ_2 the deviations of the mean monthly discharges from the long-term mean monthly discharge,
- Q_j the mean monthly discharge of the j-month in that i-year,
- Q_j^{\perp} the long-term mean monthly discharge of the j-month.
- The method compares data time series divided into <u>two periods</u>.

3. The analysis of the runoff regime changes by the deviations

Four approaches were used to divide the time data series into two periods:

- A division of the time data series into two 30-year periods. The first period was from 1931 to 1960, and the second period was from 1986 to 2016.
- A division of the time data series into two halves; the first period was from 1931 to 1973, and the second period was from 1974 to 2016.
- A division of the time data series by an analysis of the residuals. The change-point of the summer and winter periods determines the division of the time data series (*Table 1* in Results, the columns *Qsum* and *Qwin*). The summer period was defined as May to October and the winter period from November to April.
- A division of the time data series also by an analysis of the residuals. The change-point of the mean monthly discharge period determines the division of the time data series (*Table 1* in Results, the last column *Qm*).

3. The analysis of the runoff regime changes by the deviations

The sample of analysis of the runoff regime changes by the deviations

The trend lines of the deviations created an angle α .

 $\alpha = \alpha_1 - \alpha_2$

- The angle α ranges from (10°, -10°) to (20°, -20°) and indicates a certain change.
- The angle greater than (20°, -20°) indicates a significant change in the runoff regime.

Results - 1. The analysis of the residuals

- Many change-points were indentified in **1941 for September** and in **1952 for November**,
- a considerable number of change-points were identified in the **1970s** and **1980s**.

Table 1

Stat.	Jan.	Feb.	Mar.	Apr.	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Q_{sum}	\mathbf{Q}_{win}	Q _m	
5040	1974	1988	1948	1970	1987	1987	1952	1987	1941	1941	1952	1988	1942	1948	1948	
5311	1953	1977	1983	1972	1979	1989	1975	1972	1984	1980	1952	1966	1979	1980	1980	-TT-
5400	1947	1944	1953	1953	1974	2002	1985	1981	1975	1962	1952	1952	1964	1953	1981	T
5880	1954	1954	1951	1956	1986	1954	1993	1978	1941	1981	1952	1962	1945	1983	1949	tr
6130	1974	1965	1951	1970	1972	1968	1966	1966	1941	1980	1952	1976	1966	1977	1967	r€
6200	1973	1965	1976	1970	1938	1954	1975	1986	1941	1981	1952	1989	1987	1965	2002	p
7160	1953	1977	1981	1972	1996	1989	1966	1966	1941	1984	1952	1966	1985	1970	1981	ea
7290	1953	1977	1983	1970	1987	1989	1966	1966	1941	1984	1952	1980	1985	1981	1981	p
7440	1982	1979	1970	1980	1942	1994	1952	1970	2009	1973	1952	1976	2009	1980	1981	la
7820	2008	1979	1941	1961	1969	1964	1952	1970	1944	1963	1952	1976	1953	1980	1980	y
8560	1953	1977	1945	1980	1945	1975	1960	1960	1941	1984	1952	1952	1955	1953	1955	
8870	1953	1965	1945	1980	1974	2004	1996	1985	1941	1973	1952	1985	1969	1981	1945	
9500	1953	1977	1986	1980	1973	1964	1996	1985	1941	1980	1980	1987	1969	1981	1981	
8320	1975	1969	1946	1970	1982	1967	1996	1960	1941	1973	1952	1950	1949	1970	1949	

The range of colors from green to red represents the period from the earliest changepoint year to the latest change-point year.

Results – 2. Pettitt's test

- More than a quarter of the change-points are statistically significant (58 change-points out of 210).
- November has 6 significant change-points in 1952. Overall, there were 8 change-points in 1952.
- The entire measured period of the mean monthly discharges (*Qm* in the *Table 2*) has 4 significant change-points out of a total of 9 change-points in 1980. Table 2

-		C I									iubic .				
Stat.	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Q_{sum}	Q _{win}	Q _m
5040	1973	1988	1948	1988	1997	1987	1987	1987	1954	1954	1981	1998	1987	1948	1988
5311	<u>1953</u>	<u>1971</u>	<u>1983</u>	1979	1996	<u>1989</u>	<u>1975</u>	1972	<u>1980</u>	<u>1981</u>	<u>1952</u>	<u>1966</u>	<u>1980</u>	<u>1979</u>	<u>1980</u>
5880	<u>1954</u>	<u>1954</u>	<u>1951</u>	<u>1952</u>	1986	1954	1993	1978	1941	1981	1950	<u>1962</u>	1945	1983	<u>1949</u>
5400	1947	<u>1944</u>	1944	1997	1974	2002	1985	1981	1941	1962	<u>1952</u>	<u>1952</u>	2002	1953	1981
6130	1992	2006	1998	1972	1987	<u>1968</u>	<u>1972</u>	<u>1986</u>	1942	<u>1966</u>	<u>1966</u>	1976	1966	<u>1977</u>	<u>1967</u>
7160	1983	1977	1983	<u>1972</u>	1996	<u>1989</u>	1975	1980	1981	1941	<u>1952</u>	<u>1966</u>	<u>1980</u>	1970	<u>1980</u>
6200	<u>1973</u>	1965	2009	1970	1938	1957	1982	<u>1986</u>	1941	1941	1952	1989	1987	1936	2002
7290	2000	1981	1983	<u>1988</u>	<u>1987</u>	<u>1989</u>	1972	1978	1981	1941	<u>1952</u>	1967	<u>1985</u>	<u>1983</u>	<u>1985</u>
7440	1982	<u>1981</u>	<u>1970</u>	1988	1991	1991	1952	1952	1950	1962	1980	<u>1970</u>	<u>1950</u>	1980	<u>1980</u>
7820	1983	<u>1980</u>	1941	1961	1964	1989	1975	1996	1980	1944	1945	1966	1950	1980	1980
8560	<u>1983</u>	<u>1973</u>	1955	1980	1991	1976	1960	1960	1955	1945	<u>1952</u>	<u>1968</u>	<u>1980</u>	1970	<u>1980</u>
8870	1953	2006	1986	2001	1969	1937	1996	1995	1941	1973	1945	1945	1969	1983	1945
9500	2004	2006	1986	2000	1969	1964	1952	1981	1996	1945	1981	1982	<u>1969</u>	1983	1981
8320	1961	1969	1971	1970	1936	1936	1996	1945	1941	1945	<u>1952</u>	1960	<u>1949</u>	1970	1949

The underlined years in Table are changepoints with a p-value ≤ 0.15 .

The range of colors from green to red represents the period from the earliest change-point year to the latest changepoint year.

Results – 3. The analysis of the runoff regime changes

- A significant number of the changes in the runoff regime were identified at the Šaštín-Stráže station (5040). Where from May to November, but excluding September, changes in the runoff regime were identified.
- The method found the most changes in the runoff regime were in October, where changes in five stations were identified.

- The graph shows an analysis of the deviations for the stage-discharge gauging station 5040 (Šaštín-Stráže) in August.
- The division of the measured period is based on the seasonal mean monthly discharges (*Table 1*, *Qsum* vs. *Qwin*).
- Specifically for this graph, the first period was from 1931 to 1942 and the second period from 1943 to 2016.
- The change-point was in 1942 (*Table 1*, row 5040, column *Qsum*). The angle between the trend lines is 21.1°. <u>This means a significant change in the runoff regime in August.</u>

Discussion

- The analysis of the residuals identified the most changes in September (year 1941) and in November (year 1952). A lot of the change-points were identified in the 1970s and 1980s. This simple method is applicable to hydrological data series. A disadvantage is the absence of statistical significance, but Pettitt's test, which showed statistical significance, was used in the study.
- The change-points identified by Pettitt's test show several significant change-points in November of 1952. More than a quarter of the change-points were statistically significant.
- A considerable number of changes in the runoff regime were identified at the Šaštín-Stráže (5040) station and at other stations in October.
- The results of the analyses show certain changes in the mean monthly discharges, but in order to confirm their correctness, it will be necessary to examine other hydrological and meteorological elements and use other methods for identifying the changes.

3rd International Electronic Conference on Water Sciences

Thank you for your attention