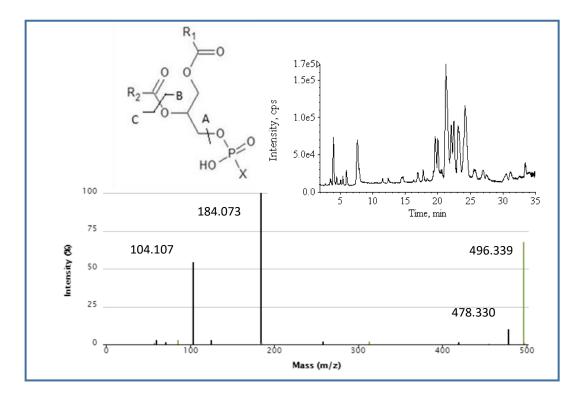


3rd International Electronic Conference on Metabolomics

15-30 November 2018 chaired by Prof. Peter Meikle, Dr. Thusitha W. Rupasinghe, Prof. Susan Sumner, Dr. Katja Dettmer-Wilde

Annotation of phospholipids in mass spectrometry-based metabolomics

Raúl González-Domínguez ^{1,2*}


 ¹ Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain.
² International Campus of Excellence ceiA3, University of Huelva, 21007 Huelva, Spain.

* Corresponding author: raul.gonzalez@dqcm.uhu.es

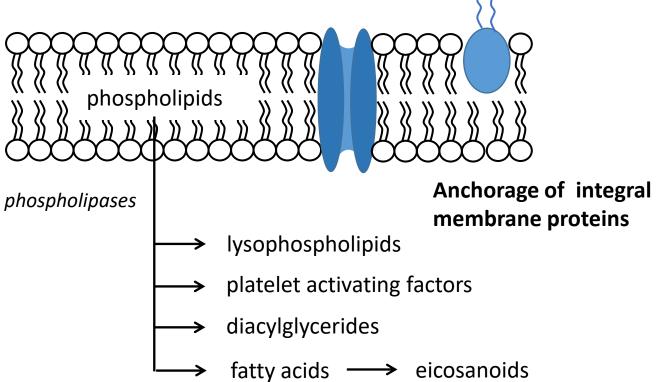
Annotation of phospholipids in mass spectrometrybased metabolomics

3rd International Electronic Conference on Metabolomics 15-30 November 2018

Abstract:

Phospholipids play numerous roles in biological systems, including the formation of membrane lipid bilayers and the signaling of multiple biological pathways, so that their dyshomeostasis have been associated with the development of multiple diseases, such as Alzheimer's disease and cancer. Metabolomics based on mass spectrometry has been largely employed to investigate these disease-related perturbations in the phospholipidome. However, the annotation of discriminant features still remains as a major bottleneck in the metabolomic pipeline. Chemical standards of individual phospholipid species are normally not commercially available due to the large number of isomers, so the knowledge of their characteristic fragmentation patterns upon tandem mass spectrometry is of great utility for their annotation. In this work, we provide a simplified guideline for the MS/MS-based identification of the most important phospholipid classes and their fatty acid composition.

Keywords: phospholipids; mass spectrometry; annotation



3rd International Electronic Conference on Metabolomics 15-30 November 2018

Introduction

Phospholipids play pivotal roles in biological systems

Formation of cellular membranes

Precursor of lipid mediators (neural cell homeostasis, immune responsiveness, oxidative stress, neuroinflammation)

3rd International Electronic Conference on Metabolomics 15-30 November 2018

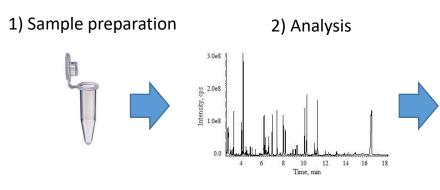
sponsors: MI

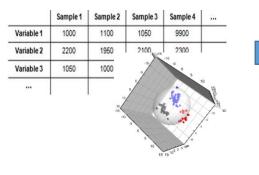
Introduction

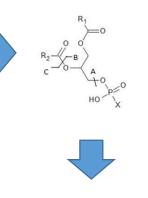
Numerous diseases elicit abnormal phospholipid homeostasis

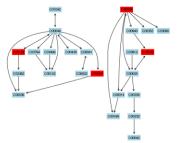
- Alzheimer's disease
- Parkinson's disease
- Cancer

Phospholipids and related metabolites have a great potential to elucidate **pathological hallmarks** associated with diseases and to discover candidate **diagnostic biomarkers**


Metabolomics and Lipidomics

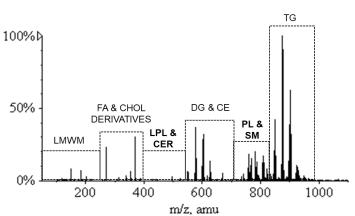

3rd International Electronic Conference on Metabolomics 15-30 November 2018


Introduction

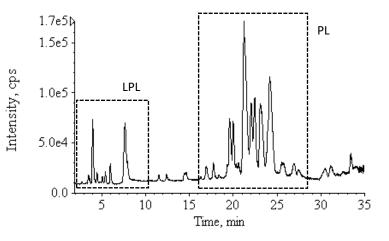

 Data processing & statistical analysis

4) Annotation

- Various analytical platforms can be employed to characterize the phospholipidome
- Annotation of phospholipids is a major bottleneck in the metabolomic pipeline


5) Biological interpretation

3rd International Electronic Conference on Metabolomics 15-30 November 2018


MS-based characterization of the phospholipidome

Direct Mass Spectrometry

✓ Short analysis time✓ Wide coverage

Liquid chromatography Mass Spectrometry

✓ Reduced matrix effects✓ Separation of isomers

3rd International Electronic Conference on Metabolomics 15-30 November 2018

MS-based characterization of the phospholipidome

	ESI+	ESI-
Phosphatidylcholines (PC)	[M+H] ⁺ , [M+Na] ⁺ , [M+K] ⁺	[M-H] ⁻ , [M-CH ₃] ⁻ , [M+Cl] ⁻ , [M+FA] ⁻
Phosphatidylethanolamines (PE)	[M+H] ⁺ , [M+Na] ⁺	[M-H] ⁻
Phosphatidylinositols (PI)	-	[M-H] ⁻
Phosphatidylserines (PS)	[M+H] ⁺	[M-H]⁻
Phosphatidylglycerols (PG)	[M+H] ⁺	[M-H] ⁻
Phosphatidic acids (PA)	-	[M-H] ⁻

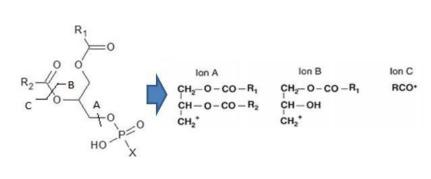
Table 1. Major adducts detected upon electrospray ionization

3rd International Electronic Conference on Metabolomics 15-30 November 2018

Annotation of phospholipids

	ESI+	ESI-
Phosphatidylcholines (PC)	184.07, 104.11, 86.09 [m/z-59] ⁺ [M+H-183] ⁺ , [M+Na-205] ⁺ , [M+K-221] ⁺	168.04 [m/z-60] ⁻ for [M+FA] [m/z-50] ⁻ for [M+Cl]
Phosphatidylethanolamines (PE)	[M+H-141] ⁺ , [M+Na-163] ⁺	196.04
Phosphatidylinositols (PI)	-	241.02
Phosphatidylserines (PS)	[M+H-185] ⁺	[M-H-87] ⁻
Phosphatidylglycerols (PG)	[M+H-171] ⁺	171.03
Phosphatidic acids (PA)	-	153

Table 2. Characteristic ions upon MS/MS fragmentation for each phospholipid class

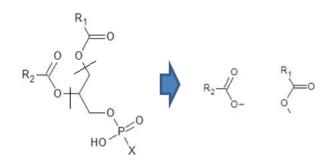


3rd International Electronic Conference on Metabolomics 15-30 November 2018

Annotation of phospholipids

MS/MS fragmentation in the positive ionization mode

	m/z	
Fatty acid	ion B	ion C
Lauric acid	257.212	183.175
Myristic acid	285.243	211.206
Palmitoleic acid	311.259	237.222
Palmitic acid	313.274	239.237
Linolenic acid	335.259	261.222
Linoleic acid	337.274	263.237
Oleic acid	339.290	265.253
Stearic acid	341.306	267.269
Araquidic acid	369.337	295.300
Eicosapentaenoic acid	359.259	285.222
Araquidonic acid	361.274	287.237
Docosahexaenoic acid	385.274	311.237



3rd International Electronic Conference on Metabolomics 15-30 November 2018

Annotation of phospholipids

MS/MS fragmentation in the negative ionization mode

Fatty acid	m/z RCOO ⁻
Lauric acid	199.170
Myristic acid	227.201
Palmitoleic acid	253.217
Palmitic acid	255.232
Linolenic acid	277.217
Linoleic acid	279.232
Oleic acid	281.248
Stearic acid	283.264
Araquidic acid	311.295
Eicosapentaenoic acid	301.217
Araquidonic acid	303.232
Docosahexaenoic acid	327.232

3rd International Electronic Conference on Metabolomics 15-30 November 2018

Conclusions

- ✓ MS-based metabolomics provides wide coverage of the phospholipidome
- ✓ Phospholipids show characteristic fragmentation patterns upon ESI-MS analysis, thus facilitating their annotation
- Depending on the phospholipid class, characteristic daughter ions are detected in the positive and negative ion modes
- ✓ MS/MS breakage of ester bonds between fatty acids and the glycerol backbone allows identifying the fatty acid composition of phospholipids

3rd International Electronic Conference on Metabolomics 15-30 November 2018

