Detection of cancer-associated glycobiomarkers using lectin-based biosensors

M. Luísa S. Silva

Centre of Chemical Research, Autonomous University of Hidalgo State, México mluisasilva@portugalmail.pt

Introduction

cancer-associated

truncated O-glycan

STn

Τn

Lectin biosensors are attractive devices for the detection of cancer-associated glycobiomarkers in serum since they combine the advantageous aspects of biosensors (portability, easy use in point-of-care analysis, low sample requirement) with the high selectivity of lectin biorecognition. This work presents three lectin-based impedimetric biosensors for the selective detection of specific aberrant cancer-associated O-glycans, namely STn, Tn and T antigens, which are wellestablished pan-carcinoma biomarkers. For these three biosensors, Sambucus nigra agglutinin (SNA), Vicia villosa agglutinin (VVA) and Arachis hypogeae agglutinin (PNA) were used as biorecognition elements, with specificity for STn, Tn and T antigens, respectively. The binding event between each lectin and the corresponding aberrant O-glycan was monitored by electrochemical impedance spectroscopy, measuring the increase in the biosensor's impedance after incubating the samples. The increase in impedance was related to the lectin-glycan complex formation [1-3].

Biosensor construction

lectin immobilized

on the biosensor

SNA

VVA

PNA

	 alkanethiol/ mixture of different alkanethiols Au Au (a) 	
Au/SPE (low temperature cure ink gold electrode)		(b) 1. ECD/NHS 2. lectin
°,	Fe(CN) ₆ ³⁻ /Fe(CN) ₆ ⁴⁻	Fe(CN) ₆ ³⁻ /Fe(CN) ₆ ⁴⁻
alkanethiol lectin O-gycoprotein	(U) _{i,Z} - Ζ' (Ω)	EIS detection (d)

Figure 2 – Randles equivalent circuit for the developed biosensors. R_s – resistance of the electrolyte solution; CPE – constant phase element; R_{cT} – charge transfer resistance.

Figure 1 – Schematic diagram describing the construction of each lectin biosensor and detection of aberrant O-glycans by EIS: (a) alkanethiol/mixed alkanethiols self-assembled monolayer is formed via incubation of screen-printed electrodes for 24 h; (b) the carboxylic acid end of the alkanethiols are activated with ECD and NHS to allow covalent binding with the lectin; (c) the truncated O-glycan present in glycoproteins is captured based on the affinity of the lectin to the referred structure; (d) the formation of the complex lectin-truncated O-glycan is monitored by the increase in the electrode impedance (by electrochemical impedance spectroscopy).

% AR

Selectivity

SNA biosensor

model glycoprotein used to

monitor complex formation

bovine submaxillary mucin;

human transferrin

asialofetuin;

asialo-bovine submaxillary

mucin

asialofetuin

Figures 3 and 4 – Nyquist plots obtained before and after incubating the blank biosensor (with no lectin) with BSM solutions (a) 0.01 μ g ml⁻¹ and (b) 1.0 μ g ml⁻¹, for 5 min at room temperature.

Figures 5 and 6 – Response for several glycoprotein solutions, incubated for 10 min. Error bars indicate standard deviations of

Figure 8 – Results obtained in sample analysis for VVA and PNA biosensors. Each sample pool refers to a type of carcinoma. Ctrl represents a pool of samples from healthy Error bars indicate standard donors. deviations of duplicate measurements with

VVA biosensor

PNA biosensor

duplicate measurements with two independent biosensors for each solution.

Conclusions

• Sample analysis

- 1. All biosensors were constructed following the same general procedure, demonstrating its high versatility.
- 2. The three biosensors correctly discriminated samples from healthy donors and from cancer patients with different carcinomas, showing high selectivity towards the antigens STn, Tn and T.
- 3. Using the three lectin biosensors in the analysis of the same sample allowed to characterize the glycosylation profiles of glycoproteins in the diverse types of carcinomas.

References: [1] M. Luísa S. Silva, Evelin Gutiérrez, José A. Rodríguez, Catarina Gomes, Leonor David. Biosens. Bioelectron. 57 (2014) 254-261. [2] M. Luísa S. Silva, María G. H. Rangel. Sens. Actuators B 252 (2017) 777-784. [3] María. G. H. Rangel, M. Luísa S. Silva. Biosens. Bioelectron. 141 (2019) 111401.

5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

