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Abstract: The Water Framework Directive (WFD, EC, 2000) states that the "good" ecological status 

of natural water bodies must be based on their chemical, hydromorphological and biological 

features, especially under drastic conditions of floods or droughts. Phytoplankton is considered a 

good environmental bioindicator (WFD) and the Climate Change has a strong impact on 

phytoplankton communities and water quality. The development of robust techniques to predict 

and control phytoplankton growth is still in progress. The aim of this study is to analyze the impact 

of the different stressors associated with the change in phytoplanktonic communities in small 

rivers in the center of the Iberian Peninsula (Southwestern Europe). A statistical study on the 

identification of the essential limiting variables in the phytoplankton growth and its seasonal 

variation by Climate Change was carried out. In this study, a new method based on the partial 

least-squares (PLS) regression technique has been used to predict the concentration of 

phytoplankton and cyanophytes from 22 variables usually monitored in rivers. The predictive 

models have shown a good agreement between training and test data sets in rivers and seasons 

(dry and wet). The phytoplankton in dry periods showed greatest similarities, being these dry 

periods the most important factor in the phytoplankton  proliferation 

Keywords: phytoplankton; climate change; prediction; Partial Least Squares Regression 

 

1. Introduction 

The Water Framework Directive (WFD, EC, 2000) states that the "good" ecological status of 

natural water bodies must be based on their chemical, hydromorphological and biological 

characteristics, compared to the reference conditions [1]. To comply with the protection of surface 

waters established in the Water Framework Directive, it is necessary to monitor the ecological and 

chemical status of water quality, especially under drastic conditions of floods or droughts due to the 

greater epidemiological risk that occur during these periods. 

Phytoplankton is considered a good environmental bioindicator since it presents temporary 

patterns related to environmental changes and, in addition, the processes that act on this community 

operate on a reduced time scale, so phytoplankton is an important ecological tool to obtain answers 

in the short term [2,3]. Furthermore, spatio-temporal variability in the structure of phytoplankton 

communities plays an important role in the structure and function of aquatic ecosystems [4]. 

Multiple factors affect the phytoplankton population, among these are the main nutrients (nitrogen, 

carbon and phosphorus) [5], the environmental conditions, the hydrodynamics and 

hydromorphology of rivers [6,7] and the biotic conditions (competition, predators, etc.) [8]. 
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With regards to environmental and climatic conditions, phytoplankton depends on light 

intensity and temperature since they affect the speed of photosynthetic processes [9; 10], on the level 

of the water surface since a low flow rate and a decrease in the level of water in rivers produces an 

increase of phytoplankton [11]. Other studies have also shown that increasing organic carbon and 

nutrient inputs from landfills can lead to changes in the competitive dynamics between bacteria and 

phytoplankton, reducing phytoplankton biomass and increasing bacterial abundance [5]. In this 

sense, Climate Change affects ecosystems on a planetary scale [12] and is especially important in 

some regions around the world. Thus, several predictive models have shown that the Mediterranean 

climate region is particularly sensitive to global warming due to the progressive establishment of a 

drier and warmer climate [13,14]. The effects of drought on the hydrology of the Mediterranean 

basins has been studied [15–19] since it is expected that the effects - in terms of frequency and 

intensity - of the hydrological drought will be more severe due to Climate Change. 

The Climate Change has a special effect on unregulated rivers that are temporary or 

intermittent. Temporary rivers are ecologically unique, supporting important ecosystem processes 

and functions and being highly relevant in the conservation and protection of the biodiversity. At 

the same time, they suffer a large number of anthropogenic impacts, including alterations of their 

flow regime, changes in their bends and channels, nutrients excesses and invasive species [20]. 

Predictions on Climate Change have indicated that the Mediterranean region will suffer severe 

deficits in the flow of its rivers, increasing the vulnerability of temporary rivers and of those that are 

now perennial, which will become temporary [21,22]. The appropiate management of the rivers, 

maintaining their level and flow in regulated rivers, can improve the quality of the water, especially 

when they contain phytoplankton species that can harm the human population such as 

cyanobacteria [23]. 

The objective of this study is to analyze the impact of the different stressors associated with the 

change in phytoplanktonic communities in small rivers in the center of the Iberian Peninsula 

(Southwestern Europe) with the multivariate method of Partial Least Squares (PLS). PLS statistical 

regression is a recent technique that generalizes and combines features from principal component 

analysis and multiple regression [24,25] and that can be used to analyze data from environmental 

effects on biodiversity [26,27] and large-scale influence of climate [28,29]. In the present study, the 

establishment of statistical models, suitable for predicting concentration of phytoplankton and 

cyanophytes from 22 variables usually monitored in rivers, has been carried out. Furthermore, the 

influence of phytoplankton and cyanobacteria concentration with respect to other environmental 

and morphological variables in the different sampling points and seasonal periods, has been 

established. A better knowledge of the limiting factors in the growth of phytoplankton will allow 

watershed managers to improve the quality of the discharge sites and prevent risks to the 

population. 

2. Materials and Methods 

2.1. Study Area 

The study area for the determination of superficial water quality is located in the province of 

Salamanca (Western Spain). This province covers an area of 12 340 km2 and forms the South-Western 

part of the River Duero basin, which is the most important aquifer system of the Iberian Peninsula. 

The climate of the region is continental, with considerable seasonal fluctuations in temperature (the 

difference in mean temperature between the hottest and coldest days is almost 20 °C) and low 

humidity. Precipitation is low (mean annual rainfall 380 mm), highly irregular and usually absent in 

July and August, and, hence, during the dry season the hydric balance is clearly negative. This 

Salamanca province has 3 river basins (Figure 1), two belonging to the Duero river, (Tormes and 

Á gueda river basins) and one river basin belonging to Tajo river (Alagón river basin). The Tormes 

river basin is not contemplated because it has been previously studied in depth by the authors [18]. 
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Figure 1. Geographic locations of the sampling sites on Agueda and Alagón rivers where data were 

collected. 

2.2. Sampling and Analysis 

The 22 parameters were measured at 33 sampling points (Figure 1: red points). They were 

selected to evaluate the evolution of the quality of water of the Agueda and Huebra rivers (Agueda 

river basin) and Alagón river (Alagón river basin) upstream and downstream of municipal 

wastewater discharges (Figure 1: black points) to consider the influence of these discharges on water 

quality. The present study has been carried out during the years 2015 and 2017. Furthermore, within 

the years studied, 2 seasonal periods have been investigated. May to September seasonal period is 

considered as summer (summer 2015 and 2017) and November to March seasonal period as winter 

(Winter 2017). On the other hand, the first study period corresponds to the 2014-2015 hydrological 

year, been considered as a wet hydrological year. The second period corresponding to the year 2017 

(hydrological years 2016-2017 and 2017-2018) registered a rainfall much lower than normal, having 

been considered as very dry period. This covered an extreme drought occurring from mid-July 2016 

until mid-October 2017. 

The analyses parameters were: total solids, ammonia, nitrite, nitrate, total phosphorus, sulfate, 

chloride, fluoride, calcium, magnesium, chemical oxygen demand, biochemical oxygen demand, 

total organic carbon, colour and total and fecal coliforms in the water samples. This parameters were 

determined using official or recommended methods of analysis [29,30]. The in situ measurements 

were: pH, temperature, conductivity, turbidity, and dissolved oxygen. Algal class analysis 

(Cyanophyta, Cryptophyta, Chlorophyta, Bacillariophyta and Dinophyta) was carried out with the 

fluoroprobe, a submergible spectrofluorometer (bbe FluoroProbe) [31]. 

2.3. PLS Regression Method 

The prediction models were set up using of the PLS option of SIMFIT statistical open source 

package [32]. PLS regression is particularly useful to predict a new set of dependent variables 

(response) from a large set of independent variables (predictors). Prediction models are achieved by 

extracting from the predictors and response variables a new set of orthogonal factors called latent 

variables, which capture the best predictive power. PLS regression searches for a set of components 
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performing a simultaneous decomposition of predictors and response variables with the constraint 

that these components explain as much as possible the covariance between predictors and responses 

3. Results 

Two river basins at two different seasonal periods (dry and wet) have been studied. As an 

example, the development of the predictive model for the dry winter period in the Á gueda River is 

presented. 

The PLS technique considers two types of matrices of variables, on the one hand the matrix of 

predictive variables (X) that will be composed, for each of the rivers in each of the stations studied, 

by the values of the 22 variables measured. On the other hand, the matrix of response variables (Y) 

encompasses the two variables to be predicted, which are phytoplankton, measured chlorophyll-a, 

and cyanobacteria, measured as phycocyanin pigment. Figure 2 shows the cumulative variance of 

the latent factors, for both the X and Y variables in the Agueda river (dry winter seasonal period). As 

can be seen, a plateau is reached where the gain in capturing the variability is very small. Based on 

the fact that this capture of variability is considered acceptable, can be admitted for calibration 

purposes that 7 factors are sufficient for the model (97% capture of variability in X and 92.94% in Y 

for phytoplankton and 97% in X and 89% in Y capture variability for cyanobacteria). 

 

Figure 2. Cumulative variance captured against the number of PLS factors, for both phytoplankton 
(a) and cyanobacteria (b). 

To quantify the importance of each of the variables X in the prediction model, the scores of 

statistics VIP (“Variable Influence on Projection” [32]) was used. The VIP-scores for the 22 variables 

X put into play, for prediction model built with 7 factors, are shown in Figure 3. Important 

predictors were identified in the modelling of phytoplankton and cyanobacteria concentration by 

considering the variables with VIP-scores higher than one. It should be highlighted as better 

predictors for both are temperature, ammonium and fecal coliforms. 
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Figure 3. VIP-scores of the PLS prediction model for phytoplankton and cyanobacteria concentration 
in the dry winter seasonal period of Á gueda river. 

PLS, as well as its interpretation, can be expressed in the form of a multiple linear regression 

model:   

𝑌 =  𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽21𝑋21 + 𝛽22𝑋22 

 

Being 𝛽i (from i = 1 to 22) the coefficients of the predictive variables in the constructed model, 

and 𝛽0 the independent term. Finally, the following equations are obtained 

Phytoplankton = 61,3798 - 1,0141 pH + 0,1233 Colour + 0,0550 Turbidity - 1,7876 Temperature + 

0,0007 Conductivity - 0,0731 Dissolved oxygen + 0,0009 Solids - 0,3679 BOD - 0,1532 COD - 0,2751 

TOC + 4,7291 Ammonium + 0,7761 Nitrate -74,8815 Nitrite -13,8925 Phosphate + 0,0389 Sulfate - 

0,0226 Alkalinity + 0,1323 Chloride - 13,2087 Fluoride - 0,0312 Calcium + 0,5091 Magnesium - 0,0003 

Total Coliforms + 0,0040 Fecal Coliforms. 

Cyanobacteria = 41,6068 - 1,4866 pH + 0,1075 Colour - 0,0438 Turbidity - 1,6663 Temperature - 0,0038 

Conductivity + 0,5793 Dissolved oxygen + 0,0050 Solids - 0,1817 BOD - 0,0628 COD - 0,2621 TOC + 

19,6949 Ammonium - 0,4312 Nitrate - 46,0138 Nitrite - 11,3262 Phosphate + 0,0236 Sulfate + 0,0124 

Alkalinity + 0,0906 Chloride - 5,2369 Fluoride - 0,0910 Calcium + 0,2238 Magnesium - 0,00001 Total 

Coliforms+ 0,0027 Fecal Coliforms. 

PLS methodology consists of two differentiated parts; calibration with a training-set data and 

validation with a test-set data. The experimental data for the Ageda river example were divided ¾  

for a training-set data and ¼  for the test-set data. The process of calibration (Figure 4) and validation 

(Table 1) of the model is exposed. 
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Figure 4. Correlations of the values predicted by the PLS model with the experimental values. 

In training procedure 7 PLS factors were selected as are optimum and the agreement between 

the measured and the predicting values for the model are shown in Figure 4 where it can be seen a 

good correlation with the training data. Nevertheless, the above good agreement with the training 

set data is not the better approach for the goodness of the model. Therefore, a test-set with a new 

experimental data were used to validate the model. The prediction rates for the sampling points in 

the Agueda river example are presented in Table 1. 

Table 1. Validation of PLS phytoplankton and cyanobacteria concentrations models. 

 Phytoplankton Cyanobacteria 

Samplig Points 
Y real 

(g/L) 

Y 

predicted 

(g/L) 

Relative 

Error (%) 

Y real 

(g/L) 

Y predicted 

(g/L) 

Relative 

Error (%) 

Irueña 13.57 13.47 0.69 1.73 2.36 36.84 

Sanjuanejo 18.03 15.90 11.81 6.73 6.10 9.38 

C. Rodrigo 16.31 12.03 26.27 5.79 2.95 48.99 

Ivanrey 11.48 10.40 9.40 2.31 2.73 18.19 

Siega Verde 14.83 12.78 13.80 2.14 3.39 58.08 

Fregeneda 15.5 11.49 25.86 3.76 1.11 70.41 

Average 14.64   40.31 

As shown on Table 1, the prediction error percentages have been better for phytoplankton 

(15%) than for cyanobacteria (40%), which indicates a good fit of the PLS prediction model for 

phytoplankton. 

4. Discussion 

Following the same methodology, in order to carry out some comparisons between the rivers, 

all the studies were carried out using the same PLS statistical procedure with 7 factors for the 

different rivers in the different seasonal periods analyzed. The results of the comparison are shown 

in the conclusions. 

5. Conclusions  

A new methodology, based on the multivariate regression technique PLS, has been proposed in 

this work, which allows, based on 22 variables usually monitored in rivers, to predict the 

concentration of phytoplankton and cyanophytes. The predictive models generated have presented 

a goodness of fit tested successfully using training data series. In turn, these models have performed 

well for the prediction of phytoplankton and cyanobacterial concentrations from new validation 

data series, although prediction error rates have been better for phytoplankton (10-25%) than for 

cyanobacteria (40-60%).  

Predictive models are formulated by equations of the linear multiple regression type where the 

coefficients indicate the participation of each of the variables in the model. In this sense, the 

determined coefficients have varied from one river to another and between seasons, what was 

expected. However, a certain similarity of the coefficients for dry summer periods (droughts) has 

been observed. In these transition periods, their features are most important in the prediction, since 

they exhibit favourable conditions for the proliferation of the phytoplankton community  
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