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Abstract: The application of statistical and Machine Learning (ML) models plays a critical role in 

planning and decision support processes for WDNs management. Failure models can provide 

valuable information for prioritizing the system rehabilitation even in data scarcity scenarios (such 

as developing countries). Few studies analyze the performance of more than two models and 

examples of case studies in developing countries are insufficient. A more comprehensive analysis 

of models' performance and limitations is necessary for an adequate prediction of pipe failure. This 

study compares various statistical and ML models to provide useful information to practitioners for 

the selection of a suitable pipe failure model according to information availability and network 

characteristics. Three statistical models (i.e. Linear, Poisson, and Evolutionary Polynomial 

Regressions) were used for failure prediction in groups of pipes. The K-means clustering approach 

was applied to improve the performance of the statistical models. ML approaches, particularly 

Gradient Boosted Tree (GBT), Bayes, Support Vector Machines and Artificial Neuronal Networks 

(ANNs), were compared in predicting individual pipe failure rates. The proposed approach was 

applied to a WDN in Bogotá (Colombia). The results of the statistical models showed that the 

cluster-based prediction model reduces the prediction error of pipe failures. Regarding ML models, 

all methods but the ANNs showed acceptable performance. The GBT approach had the best 

performing classifier.  

Keywords: water distribution network; deterioration; pipe failure prediction; statistical and data-

driven models; rehabilitation 

 

1. Introduction 

The main objective of Water Distribution Networks (WDNs) is to supply water to the population 

in the required quantity and quality [1]. Factors such as climate change, deterioration of system 

components, uncertainty regarding the physical condition of the pipes, growing water demand, and 

economic restrictions increased the complexity of their management [2]. Pipe failures in water 

distribution systems may cause economic, environmental and social costs, including water supply 

and traffic interruption, contaminant intrusion through the network, and loss of resources such as 

water and energy [3,4].  

According to the United Nations, water utilities assets in developing countries are more likely 

to be poorly managed due to inappropriate political administration. Besides this, the general lack of 

preventive maintenance plans leads to low-performing WDNs [5]. In Bogotá, the capital city of 

Colombia, the water losses rate ranges between 40% and 50% [6]. The WDNs renewal plans have 

focused on replacing asbestos-cement pipes, galvanized iron, and ductile iron for new plastic 

materials as PVC. However, an adequate renewal prioritization strategy is not being carried out. 

Instead, a reactive strategy is adopted in which a pipe is rehabilitated or replaced after the failure is 

detected, implying low efficiency and poor service quality. 

The effective renovation planning of the WDNs requires, among others, an accurate 

quantification of the pipes’ structural deterioration. Pipeline inspection is frequently a difficult and 
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expensive task. Hence, the application of statistical and ML models for pipe failure modeling 

constitutes an important tool for planning proactive rehabilitation strategies of WDNs. Even in 

limited data availability, predictive failure models can give valuable information, helping to 

prioritize the system rehabilitation [7].  

Predictive models can be classified into physical [8], statistical [9] and data-driven models [4]. 

Physical models analyze the load applied to the pipe and the capacity of the pipe to resist it along 

with the corrosion on the internal and external pipe wall, to predict their propensity to break [10]. 

Despite their accuracy, physical models compared with other approaches have significant data 

demands and require considerable economic resources for the quiantification of pipe’s deterioration 

processes. Statistical models use available historical breakage data to identify the pipe failure patterns 

[8]. These models are capable of linking failure patterns to the pipe descriptive variables (e.g. 

diameter, age and, length) and other operational and environmental variables such as soil type, soil 

reactivity, operating pressures, and rainfall [11]. Machine Learning methods such as Artificial 

Neuronal Networks (ANNs) and Support Vector Machines (SVMs) has been recently used due to 

their ability to produce accurate results and simulate complex relationships between the variables 

that explain the pipe’s failure process [4].  

In the last decades, several techniques have been applied for evaluating pipe failure in WDNs, 

but not considerable research effort has been devoted to finding a suitable model for pipe failure 

prediction according to the availability of information and the WDNs characteristics. To improve the 

understanding of pipe failure models’ performance and limitations, this study compares various 

statistical and ML models for a more comprehensive and accurate prediction of pipe failure. Three 

statistical models (i.e. Linear, Poisson and Evolutionary Polynomial Regressions (EPR)) were used 

for pipe failures prediction based on diameter, age of pipes and length as explanatory variables. The 

K-means clustering approach was considered to improve the performance of the statistical models. 

ML approaches (i.e. GBT, Bayes, SWM and ANNs) were compared in predicting individual pipe 

failure rates. The pipe attributes, environmental and operational variables were included as input 

variables. The proposed approach was applied to a WDN in Bogotá (Colombia).  

2. Materials and Methods 

2.1. Methodology 

Three statistical models, including Linear Regression, Poisson Regression, and EPR are used to 

estimate the number of expected failures in pipe groups. These models are selected because they 

produce explicit polynomial expressions, which provide a high level of correlation between input 

variables and the dependent variable [9,11]. Linear Regression is an extension of regression analysis 

that includes independent variables as explanatory in a predictive equation [12]. Poisson Regression 

is a count data model which describes the number of failures for a given time and can consider the 

non-negativity integer nature of the dependent variable [13]. EPR is a hybrid regression method that 

combines conventional regression techniques and genetic programming [14]. This model produces a 

range of equations in trade-off between accuracy and the number of polynomial terms [11].  

The pipes’ data is processed by removing attributes that are consider being irrelevant to the 

prediction task and those with missing values (e.g. pipe ID and pipe depth). The K-means clustering 

approach is applied to improve their performance. Data are grouped using pipe diameter, age, and 

length based on the premise that pipes with similar characteristics are expected to have the same 

breakage pattern [8]. Consequently, each pipe takes a number of failures and a length equal to the 

total lengths and the total number of failures for the individual pipes of the same group.  

Training and test datasets are built randomly. The models are trained on 70% of the available 

data and tested on the 30% remaining. K-fold cross-validation technique is used to minimize the risk 

of overfitting [15]. The explanatory variables are diameter (in mm), total length (in m) and age (in 

years) of the pipes, while the dependent variable is the total number of failures (FR). The performance 

of each model is compared using the coefficient of determination (R2) and the root mean square error 

(RMSE). They are defined as bellow [11]. 
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where yp,i =  prediction value for the sample i,  y
o

̅̅ ̅ =  mean value of measurements, y
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= 

measurement value for the sample i, y
p

̅̅ ̅ =  mean value of predictions and n =  number of data 

samples.    

ML approaches namely, GBT, Bayes, SVMs, and ANNs, are compared in predicting individual 

pipe failure rates. These methods can learn the patterns of the underlying process from past data and 

generalize the relationships between input and output data, being able to predict or estimate an 

output given a new set of input variables [16]. GBT is a forward-learning ensemble method that 

obtains predictive results through gradually improved estimations which combines the performance 

of many weak classifiers from previous iterations to produce a powerful one [17]. Bayes is a graphic 

approach that represents a probabilistic relationship between a set of variables utilized to forecast the 

behavior of a system based on an observed process [18,19]. SVMs are a supervised learning technique 

based on the principle of optimal separation classes. The SVM method builds a linear model called 

maximum margin hyperplane, which provides the greatest separation between instances with 

different values of the dependent variable [20]. ANNs are parametric regression estimators that use 

an iterative process to adjust weights and biases within their layers to recognize patterns between 

inputs and outputs [1,21].   

The pipes’ data is processed as described above. The selected attributes are separated into 

nominal and numerical, and the nominal variables are changed to a numeric type. The dataset is 

divided randomly into training and test datasets, as is described previously. K-fold cross-validation 

technique is also applied to decrease the risk of overfitting [11,18]. Table 1 provides an overview of 

the explanatory variables used for training. Further, the models are used to establish the predictions 

of pipe condition (i.e. failure or non-failure). An automated trial and error approach is adopted to 

selecting the parameters of the models. Further, the range values of the parameters are established as 

recommended in the literature. These parameters are presented in Appendix A.  

Table 1. Explanatory variables for ML models. 

Variable Name Type Description 

Physical Diameter Numerical Pipe diameter in mm 
 Age Numerical Pipe age in years 
 Length Numerical Pipe length in m 

Environmental Moisture content Nominal 
Soil moisture content (continually wet, 

generally moist and generally dry) 

 
Soil contraction and 
expansion potential 

Nominal 
Soil contraction and expansion potential 

(very low, low, moderate and high) 
 Precipitation Numerical Precipitation in m 

Operational Land use Nominal 
Land use (residential, commercial, 

industrial and institutional) 
 Valves Numerical Number of valves on the pipe 
 Hydrants Numerical Number of hydrants connected to the pipe 

 Previous failures Numerical 
Number of previous failures recorded on 

the pipe 

The performance of the ML methods is evaluated using accuracy, confusion matrix and receiver 

operating characteristic (ROC) curves. Accuracy is estimated as the fraction of correct predictions to 

the total predictions [7], as shown in Equation 3. The confusion matrix, shown in Table 2, provides 
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more information on the model performance because it categorizes the results according to 

predictions and observations. Pipes that are correctly classified as fail are represented by true positive 

(TP) and pipes correctly classified as not fail, by true negative (TN). Incorrect classifications are 

described by false negative (FN), which occurs when the model predicts that the pipe does not fail, 

but it is broken, and false positive (FP), when pipes does not fail but pipe is predicted to fail. 

Accuracy = 
(TP + TN)

(TP + TN + FP + FN)
 (3) 

Table 2. Confusion matrix for a binary classification task. 

  Predicted condition 

   Yes No 

Actual 
condition  

Yes True positive (TP) False negative (FN) 

No False positive (FP) True negative (TN) 

  Total positive Total negative 

A set of alternative metrics, particularly true positive rate (TPR), true negative rate (TNR), false 

positive rate (FPR), and false negative rate (FNR), can be used for assessing the predictive capability 

of the models. They are defined below. 

TPR = Sensitivity = 
TP

TP + FN
 (4) 

TNR = Specificity = 
TN

TN + FP
 (5) 

FPR = 1 - Specificity (6) 

FNR = 1 - Sensitivity (7) 

The ROC curve is a helpful technique for visualizing and selecting the most suitable model based 

on their performance [22]. This curve is obtained by plotting the TPR as a function of the FPR, 

considering different probability thresholds to make class predictions [20]. The ROC curve is 

considered reliable when the curve is over the 45° line. Perfect classification is graphically defined by 

the union of two lines, corresponding to FPR equal to 1 and TPR equal to 1 [7]. 

Generally, a baseline probability threshold, where any pipe with a predicted probability of fail 

greater than 50% will be assigned as failed, is used to train the models. A new threshold can be 

determined using Youden’s J index. 

J = Sensitivity + Specificity - 1 = TPR + TNR -1  (8) 

This index allows a new threshold that is closest to the optimal model. Youden’s J index does 

not modify the trained model as the same parameters are being used, and it is only employed to 

increase the sensitivity of the model to the minority class of interest [23].  

2.2. Case study 

The proposed models were applied to a WDN in Bogotá (Colombia), presented in Figure 1. The 

WDN has 61,251 pipes with an overall network length of 1,819 km and 28,671 house connections. The 

network has different pipe materials, which are distributed as follows: polyvinyl chloride (70.6%), 

asbestos-cement (24.2 %), high-density polyethylene (2.7%), cast iron (0.9%) and others (1.6%). The 

average pipe is 29 years old, including the 11,442 pipes in operation for more than 40 years. The oldest 

pipes on the network are asbestos-cement, and the majority of the pipes installed within the past 10 

years are made of polyvinyl chloride (PVC). Pipe diameters range from 12.7 to 609.6 mm and 

approximately 51% of the pipes have a diameter ranging between 50.8 and 76.2 mm. 
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Figure 1. Case study area in the sourthern part of Bogotá (Colombia). 

Failure pipe records, available from 2012 to 2018, were provided by the water utility of the city 

(EAB). A preliminary analysis showed that pipes with diameters between 76.2 and 101.6 mm 

exhibited the highest failure rate. In addition, records revealed that 67.8 % of the failed pipes are 

made of asbestos-cement and 28.3% of PVC. Based on these findings, only asbestos-cement and PVC 

pipes are considered for the analysis. As each type of material has a specific deterioration pattern 

[7,24], an independent (per material) analysis was carried out.  

3. Results and discussion 

Regarding the statistical models, Table 3 and Table 4 summarizes the obtained results. By 

comparison, the regression coefficients associated with the explanatory variables are relatively 

similar from one material to another. From the reported values, pipe length showed high relevance 

in the observed failure events. The applied methods showed an inverse relationship between the 

diameter and the number of failures. Pipe length has a positive relationship with the number of 

failures. These relationships are consistent with previous research [3,25,26]. In contrast, three of the 

equations exhibited a positive relationship between pipe age and the failures, while the remaining 

presented an inverse relationship. This is a counterintuitive result, considering that older pipes are 

most likely to fail. However, it is explained because of the age of numerous pipes is higher than the 

period time in which the pipe failures have been recorded [11]. Other authors have attributed this 

result to the fact that only measurable variables are included in the models. Variables such as 

construction practice, quality and strength of the material are not measured, but their change can 

produce variations in the pipe’s performance from one age to another [11,27]. 

Table 3. Results for Linear and Poisson regression. 

Variable 

Asbestos-cement PVC 

Linear 

Regression 

Poisson 

Regression 

Linear 

Regression 

Poisson 

regression 

𝛽 p-value 𝛽 p-value 𝛽 p-value 𝛽 p-value 

Diameter (mm) -0.457 0.000 -0.074 0.000 -0.401 0.000 -0.009 0.000 

Length (km) 2.707 0.000 0.034 0.000 0.919 0.000 0.002 0.000 

Age (years) 0.162 0.000 -0.001 0.008 0.679 0.000 -0.001 0.000 

Intercept n/a n/a 4.466 0.001 n/a n/a 5.810 0.000 
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Table 4. Results for EPR. 

 

 

L = Length (m), A = Age (years) and D = Diameter (mm) 

Table 5 presents summary of the statistical models’ performance. All the models showed an 

acceptable performance on both train and test datasets. Poisson Regression has the best performance 

according to R2 and RMSE. These results confirmed that the generalization ability (i.e. the model’s 

ability to adapt properly to a new range of inputs) of Poisson Regression is better than the two other 

techniques. The advantage of Poisson Regression is to recognize the non-negative nature of the 

predicted variable. The application of this model is suitable for predicting failures in pipes with lower 

failure rates, such as pipes with small diameters and lengths.  

Table 5. Comparison of model performance. 

Performance 

metric 
Dataset 

Linear 

Regression 

Poisson 

Regression 
EPR 

R2 Train data 0.693 0.923 0.877 

 Test data 0.695 0.927 0.885 

RMSE Train data 45.31 22.87 31.12 

 Test data 44.93 22.09 31.10 

 

 The accuracy of failure rate predictions based on different pipe characteristics is compared 

in Figure 2. For the asbestos-cement pipes, Linear Regression underestimated the failure rate in most 

cases. The limitations of the models’ predictions are more evident in old pipes and pipes with large 

diameters, which are the pipes most likely to fail. Additionally, all the models are incapable of 

predicting the failure rate in longer pipe lengths. For the PVC pipes, the predicted capability of EPR 

is limited to the small pipe diameters, whereas this prediction has substantially improved for Poisson 

and Linear Regression. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Material Equation 

Asbestos-cement FR = 0.202 L1.5 / DA2  

PVC FR = 0.00795 LA0.5/ D0.5 
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Figure 2. Average observations and predictions of failure rate based on: (a) Asbestos-cement pipe 

diameter; (b) Asbestos-cement pipe age; (c) PVC pipe diameter; (d) PVC pipe age. 

Regarding ML models, Table 6 and Table 7 summarizes the accuracy and the confusion matrices 

for the trained models. All the models used a baseline probability threshold where any pipe with a 

predicted probability of fail greater than 50% would be assigned as failed. Although accuracy was 

higher than 93%, the confusion matrices revealed that ANNs focused on correctly classifying the 

majority class, namely the pipes that do not fail. Thus, ANNs gave only 39% of correct classifications 

for asbestos-cement failing pipes. Overall accuracy may not afford a reliable performance indicator 

for models trained using an imbalanced dataset (i.e. when most of the pipes do not fail) because it 

can provide an incorrect impression of the capabilities for predict the minority class condition, in this 

case, the failing pipes. 

Table 6. Accuracy of the models. 

Model 
Asbestos-cement PVC 

Train dataset Test dataset Train dataset Test dataset 

Bayes 94.80% 94.83% 93.09% 93.69% 

GBT 99.31% 99.52% 99.71% 99.79% 

SVM 99.30% 99.47% 99.77% 99.83% 

ANN 99.00% 98.99% 99.59% 99.61% 

 

In contrast, Bayes and GBT exhibited the best performance considering the TPR (0.894 and 0.546 

for asbestos-cement test data set, respectively). The models with the lowest FPR were SVMs (0.205) 

and GBT (0.265). For failure prediction, conservative models are preferred because they reduce the 

pipes replacement cost before their service life ending [7]. Although SVMs and GBT have a lower 

TPR compared to Bayes, the using of these models does not affect the rehabilitation strategies because 

not all the pipes predicted to fail will be replaced immediately. The results discussed before are from 

the trained models for asbestos-cement pipes. The performance of PVC models, according to 

confusion matrices, showed similar results to the reported for asbestos-cement pipes. Additional 

results for PVC pipes are presented in Appendix B. 

Table 7. Confusion matrices for the Asbestos-cement pipes - test sample. 

Bayes 

Predicted 

 

GBT 

Predicted 

Yes No 
Recall 

(%) 
Yes No 

Recall 

(%) 

Actual 

Yes 39 6  

Actual 

Yes 27 14  

No 220 4106 86.67 No 7 4323 65.85 

Precision (%) 15.06 99.85 94.91 Precision (%) 79.41 99.68 99.84 

SVM 

Predicted 

 

ANN 

Predicted 

Yes No 
Recall 

(%) 
Yes No 

Recall 

(%) 

Actual 

Yes 23 18 56.10 

Actual 

Yes 16 25 39.02 

No 5 4325 99.88 No 19 4311 99.56 

Precision (%) 82.14 99.59  Precision (%) 45.71 99.42  

 

Figure 3 shows the ROC curves for the trained models. The legend provides information about 

the area under the curve (AUC), which is a quantity in the range between zero and one that integrates 

over the respective ROC function [7]. For asbestos-cement pipes, the ROC curves for the four selected 

models are relatively close. GBT achieves the highest AUC (0.998), which indicates that this method 

is well suited for pipe failure prediction, and ANNs exhibit the lowest AUC (0.984). Concerning PVC 

pipes, ROC curves for GBT and Bayes are notably close, with the most reliable prediction model being 
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GBT. The results showed that these models discriminate better between the failing pipes than those 

who do not fail because its curve is always above the 45° line. Additionally, GBT exhibited the highest 

AUC and ANNs, the lowest.   

 
(a) 

 
(b) 

Figure 3. ROC curve for failure pipes: (a) Asbestos-cement pipes; (b) PVC pipes. 

As previously mentioned, all the trained models use a baseline probability of 50%. A new 

threshold can be determined using Youden’s J index. The value of the index for the GBT method was 

0.57 and 0.54 for asbestos-cement and PVC pipes, respectively. The result suggested that, when 

applying GBT, acceptable predictions can be obtained for the failing pipes without sacrificing a 

reasonable level of accuracy for the pipes that do not fail. 

By comparison, GBT exhibited better performance than the other models. This approach has the 

advantage of providing higher importance to the misclassified pipes in each iteration, so it focuses 

not only on correctly classifying the pipes that do not fail. Results also showed that the imbalance 

dataset significantly compromised the ability of ANNs to correctly classifying the failing pipes. The 

low predictive capability is most evident in PVC pipes, as these pipes are less likely to fail, and it has 

been installed more recently. St. Clair et al. [28] and Wu et al. [4] mentioned that the data requirement 

is the main limitation of this approach. Additionally, Bayes demonstrated to be an effective model 

for classifying the failing pipes. Despite this, the model showed the highest FNR (0.848 and 0.967 for 

test dataset of asbestos-cement and PVC pipes, respectively). As mentioned earlier, the application 

of models with low FNR is preferable. 

The GBT approach was selected as the final classifier due to its performance.. Figure 4 shows the 

importance of the variables for the GBT model, where high values indicate high relevance for the 

prediction process. The most important variables were the number of previous failures, length, and 

precipitation. Rostum [29] and Kleiner et al. [30] found that the number of previous failures is a 

significant variable for predicting future failure rates. Besides, Debón et al. [22], Wang et al. [31] and 

Winkler et al. [7] also observed that the pipe’s attributes, such as age, length, and diameter, are 

significant variables for failure prediction. The other environmental and operational selected 

variables had no high significance in the modeling process. It is necessary to consider that the 

importance of the variables is representative of this case study and not for the pipe failure process 

because of the data dependency of the procedure. 
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Figure 4. Comparison of explanatory variable relative importance. 

A sensitivity analysis of GBT to the input variables was performed to provide information on its 

generalization capability. The analysis was carried out considering the effects of variation in values 

of only one input, while the others were not changed. The results showed that the GBT model trained 

for asbestos-cement pipes is more sensitive to changes in the diameter, age, and the number of 

previous failures. An increase in the diameter, precipitation, and number of valves generates an 

increment in the number of failing pipes. The GBT model trained for PVC pipes is more sensible to 

the number of previous failures, precipitation, and the number of hydrants. Modification of the other 

variables does not affect the pipes predicted to fail. These results and other findings in previous 

studies underline the need for each WDN to develop its failure model [1,32]. All the networks have 

substantive differences, and the effect of specific variables in the models is dependent on the WDN 

characteristics. 

Based on the results, the final GBT models trained are used to predict the failure probability of 

individual pipes in the WDN. Figure 5 show the pipe’s deterioration pattern in the WDN. The results 

revealed that around 0.17% of the pipes have a high probability of failure in the present condition. 

For those pipes, it is necessary to use the appropriate maintenance or replacement strategies to avoid 

failure. Likewise, for both current and predicted conditions, most of the pipes exhibit a low failure 

probability. The analysis of the probability values allowed establishing that, when comparing the 

current condition with the predicted condition, there was a 28% increase in the number of pipes with 

failure probabilities between 0.6 and 0.8, and an 18% increase in the pipes with failure probabilities 

between 0.8 and 1.0.  

According to Figure 5, It is important to highlight that some pipes do not deteriorate as expected. 

Therefore, the pipes' condition improves with a higher age. This result can be explained because, 

when the age of the pipes is increased, observations outside of the training data range are generated. 

Thus, the model requires extrapolating the predictions [7]. Although it is not intuitive, decreasing the 

failure probability can be observed in reality. Some authors associate a higher failure rate with the 

initial service life of the pipes. [7,33]. Martinez-Codina et al. [34] performed a study to determine the 

relationship between causes and pipe failure process. From the experimental analyzes, they observed 

that the failure probability amounted to a higher rate in the first years of service life than in the 

following years.     
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Figure 5. Predictions of the failure probability in asbestos-cement and PVC pipes. 

5. Conclusions  

In this paper,the performance of several statistical and ML models in predicting pipe failure in 

WDNs is evaluated. Three statistical models including Linear Regression, Poisson Regression and 

Evolutionary Polynomial Regressions were used for failures prediction based on diameter, age of 

pipes and length as explanatory variables. ML approaches including Gradient Boosted Tree (GBT), 

Bayes, Support Vector Machine and Artificial Neuronal Networks (ANNs) were compared in 

predicting individual pipe failure rates. The pipe’s attributes, environmental and operational 

variables were included as input variables. The selected case study was a highly populated area in 

Bogotá with a large WDN. 

The results of the statistical models showed that the cluster-based prediction approach reduces 

the prediction error of pipe failures when available data is limited. All the models demonstrated 

acceptable results in terms of their performance (R2 between 0.695-0.927 and RMSE between 45-22 for 

the test sample), but the application of Poisson Regression is suitable for predicting failures in pipes 

with lower failure rates. Regarding ML models, all methods but the ANNs presented acceptable 

performance. The GBT approach has the best performing classifier (ACU of 0.998 and 0.990 for the 

test sample of asbestos-cement and PVC pipes, respectively). GBT approach is more capable of 

accurately predicting pipe failure when an imbalance database is used. Furthermore, the assumptions 

and trade-offs of GBT model are more transparent than in other artificial intelligence techniques.  

Using predictive models mentioned before has the potential to significantly reduce the time and 

money allocated to the identification of deteriorated pipes. The knowledge provided by this study is 

especially important for the water utility as it provides information that helps to prioritize a proactive 

rehabilitation strategy, making it more efficient and profitable. Future work will include applying the 

modeling approach to a more detailed dataset that could incorporate other variables as water 

pressures and temperature, which affect the pipe failure process [35,36]. It is also recommended to 

evaluate the effect of the failure’s spatial correlation [37]. 
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Appendix A 

Table A1. GBT parameters. 

Parameter 
Value 

Asbestos-cement pipes PVC pipes 

Number of trees 300 300 

Maximal depth 5 4 

Learning rate 0.3 0.1 

Table A2. SVM parameters. 

Parameter 
Value 

Asbestos-cement pipes PVC pipes 

Gamma  5.0 10.0 

C 10.0 30.0 

Epsilon 0.001 0.001 

Table A3. ANNs parameters. 

Parameter 
Value 

Asbestos-cement pipes PVC pipes 

Input layers 10 10 

Hidden layers 2 1 

Hidden layer neurons 8 8 

Training cycles 2000 2000 

Learning rate 0.2 0.2 

Activation function of hidden layers Sigmoid Sigmoid 

Activation function of the output layer Sigmoid Sigmoid 

Appendix B 

Table B1. Confusion matrices for the PVC pipes - test sample 

Bayes 

Predicted 

 

GBT 

Predicted 

Yes No 
Recall 

(%) 
Yes No 

Recall 

(%) 

Actual 

Yes 27 1 96.69 

Actual 

Yes 13 15 46.43 

No 807 11977 96.43 No 15 12769 99.88 

Precision (%) 3.24 99.99  Precision (%) 46.43 99.88  

SVM 

Predicted 

 

ANN 

Predicted 

Yes No 
Recall 

(%) 
Yes No 

Recall 

(%) 

Actual 

Yes 2 26 7.14 

Actual 

Yes 12 16 42.86 

No 24 12760 99.81 No 6 12778 99.95 

Precision (%) 7.69 99.80  Precision (%) 66.67 99.87  
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