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Abstract: Pattern recognition can be adopted for structural health monitoring (SHM) based on 

statistical characteristics extracted from raw vibration data. Structural condition assessment is an 

important step of SHM, since changes in the relevant properties may adversely affect the behavior 

of any structure. It looks therefore necessary to adopt efficient and robust approaches for the 

classification of different structural conditions using features extracted from the said raw data. To 

achieve this goal, it is essential to correctly distinguish the undamaged and damage states of the 

structure; the aim of this work is to present and compare classification methods using feature 

selection techniques to classify the structural conditions. All of the utilized classifiers need a training 

set pertinent to the undamaged/damaged conditions of the structure, as well as relevant class labels 

to be adopted in a supervised learning strategy. The performance and accuracy of the considered 

classification methods are assessed through a numerical benchmark concrete beam. 

Keywords: Structural health monitoring; supervised learning; classification; autoregressive 

modeling; principal component analysis 

 

1. Introduction 

In many engineering areas, assessing the integrity and/or health of a structure is an important 

and timely topic. Several methods have been developed in the past decades for the relevant structural 

health monitoring (SHM), which aims to detect any possible damage and classify the conditions of 

structures. Methods can be distinguished into model-driven [1–4], see also [5], or data-driven ones. 

The model-driven SHM approach is based on an analytical or finite element model of the structure 

[6]. Although this approach can successfully detect damage, some limitations are represented by the 

necessity of a detailed model, of a model updating procedure and of data reduction from raw 

vibration measurements. The data-driven SHM approach is instead based on monitoring features 

that must be sensitive to damage, and then on discriminating the normal or undamaged structural 

state condition from the damaged one by analyzing the features [5,7–9]. To pursue this aim, SHM 

consists in statistical pattern recognition methodologies arranged into four steps: (1) operational 

evaluation, (2) data acquisition, (3) feature extraction, and (4) statistical decision making for the 

classification of features [5]. 
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Feature extraction is an important step in the methods of statistical pattern recognition, since 

methods may fail to provide an accurate decision using unreliable features. Series modeling is an 

applicable tool to extract damage-sensitive features from raw vibration data. In this regard, in [10] 

coefficients of autoregressive (AR) models were extracted as damage-sensitive features, whereas in 

[11] the residuals of AR models were employed to quantify the differences between the prediction 

from the AR model and the actual measurements. A different approach to extract the damage-

sensitive features is via principal component analysis (PCA). In [12], PCA was introduced to extract 

the features used for sub-surface defect detection, and in [13] PCA and independent component 

analysis (ICA) were compared for selecting the features from the measured data. 

Statistical decision making refers to the application of statistical methods for the classification of 

the extracted features. This step is related to the implementation of machine learning algorithms, to 

classify the structural state conditions and identify possible damage states [5,14–16]. The simple idea 

of machine learning relies on identifying a relationship between some features derived from the 

measured data in the undamaged or damaged conditions, as a training data set. In machine learning 

and statistics, classification is a problem of identifying the class label of a set of observations on the 

basis of a training set. The classification problem is considered as an instance of supervised learning 

that trains a classifier using the data set including the features related to both the undamaged and 

damaged conditions. In [17] a damage classification approach was presented for structures under 

varying operational and environmental conditions, with a unique combination of time series analysis 

and artificial neural networks. In [18], a comparative study of various classification algorithms was 

conducted for fault diagnosis, using different types of signals. The classification methods used were 

linear discriminant analysis, support vector machines, random forests and adaptive resonance 

theory-Kohonen neural network. In [19], the linear discriminant analysis method was adopted as a 

classifier for the damage detection in composite structures with the aid of a wavelet packet transform-

based algorithm. A naïve Bayes classifier was used in [20] and shown to be one of the most promising 

classification approaches for damage detection. Despite the studies on successful classification 

algorithms, there are some other techniques that can be used in the context of SHM: most of them 

require a simple strategy to become useful approaches in the detection of damage [21,22]. 

The main objective of this work is to discuss some classification methods and compare their 

performances in the classification of different structural conditions. Linear discriminant analysis 

(LDA), quadratic discriminant analysis (QDA), naïve Bayes (NB) classification, and decision tree (DT) 

are here adopted to recognize the class label of the structural state. AR models and PCA are applied 

to extract the damage-sensitive features from the raw vibration data. To assess the performances of 

the classification methods, a numerical benchmark concrete beam is considered. 

2. Method 

In the proposed comparative assessment, the features are selected using AR or PCA models and 

the structural state conditions are accordingly classified. Most of the classification methods require 

training and test data sets including features related to the undamaged and damaged conditions, as 

well as class labels. The performance and prediction accuracy of each of these methods depend on 

the model and algorithm parameters: a comparative assessment is therefore necessary in real-life 

cases and is here provided. Assume that X  ϵ ℜv×n is the training set, that consists of 𝑣-dimensional 

features in the undamaged and damaged conditions, where 𝑛 represents the number of sensors 

mounted on the structure; then, the training set has 𝑣 AR coefficients or principal components at 

each sensor location. Next, if z ϵ ℜv represents the vector containing the classification labels for each 

element in the training data set, the classification methods have to classify the test data through the 

information extracted from the training and class label sets.  

2.1. Feature Selection 

Assuming that a linear time-invariant representation can fit the structural response, an AR 

model for a single-output system reads [23]: 
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where: y(t) is the measured response at time t; θ = [θ1,θ2,…,θa] is the vector of AR coefficients; 𝑎 is 

the model order; e(t) is an uncorrelated residual sequence used to quantify the difference between 

the measured and predicted responses. 

PCA is a statistical procedure that is used to convert a set of observations of possibly correlated 

variables into a set of linearly uncorrelated variables, named principal components. In the context of 

SHM, PCA can be used to reduce the dimension of high-dimensional data [24], extract damage-

sensitive features [13], or discriminate between normal and abnormal conditions of a structure [25]. 

Hence, PCA linearly transforms matrix X  into a low-dimensional matrix T ϵ ℜv×k using an additional 

matrix P ϵ ℜn×k in the following form: 

 T = XP   

To apply PCA, it is necessary to standardize the original matrix on the basis of mean values and 

standard deviations of all features for each single sensor. This also helps remove the differences in 

the ranges of the variables, and provides the same importance to each of them in the statistical 

analysis. 

2.2. Classification Methods 

When two or more clusters of data are known a priori and new observations have to be classified 

based on the measured characteristics, discriminant analysis can be adopted. LDA is a classification 

method [26], that can be used to find a linear combination of features to characterize or separate the 

classes of groups. In order to perform the classification, a training data set must be defined and the 

class with the smallest misclassification cost is then predicted [27]. It is assumed that in the 𝑘-th class, 

the probability density function of x from the training set X , with mean μk and covariance Σk , is 

given by: 
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The aim is to classify the group for which the probability is largest for a randomly selected 

observation. To use Eq. (3) as a classifier, one needs to estimate the class priors, and the means and 

covariance matrix from the training data set. In the case of LDA, Gaussians for each class are assumed 

to share the same covariance matrix Σk = Σ, and the classification rule is based on a linear score 

function that is given by: 

 
 L T 1 T 11

s log
2

k k k k kp    x μ Σ μ μ Σ x ,  

where pk is the probability that a randomly selected observation falls in the 𝑘-th class. 

QDA still assumes that the features are normally distributed, but the covariance of each class is 

no more identical to all the others [28]. Overall, with LDA it is assumed that the trained model has 

the same covariance matrix for each class and only the mean values vary, whereas with QDA both 

the mean and covariance of each class both vary. QDA classifies a sample set into the cluster that has 

the largest score function, defined as: 

 
     

TQ 1 11 1
s log log

2 2
k k k k k kp      X Σ x μ Σ x μ   

The unknown values of μk, Σk, and pk are again obtained from the training data set. 

NB is a classification method that is intended to classify the feature values on the basis of the 

Bayes theorem: it assumes that the values of a particular feature are conditionally independent, given 

the class. The method then computes the posterior probability of the features belonging to each class, 

for any test data: hence, NB classifies the test data set based on the largest posterior probability. To 

perform classification, the algorithm builds the posterior probability model on the basis of Bayes rule, 

according to: 
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The algorithm classifies an observation by allocating it to the class yielding the maximum 

posterior probability.  

DT is a further classification method that applies a decision tree as a predictive model for the 

process of classification. A decision tree is a decision support tool that employs a tree-like graph as a 

model of decisions. The goal of this approach is to predict the class of new data by learning simple 

decision rules, inferred from the data features. If the target variable can take a finite set of values, 

models are called classification trees. The classification decision tree splits so-called nodes based on 

either impurity or node error: a common method dealing with impurity is the Gini’s diversity index 

or the maximum deviance reduction, which is also known as cross entropy [29]. Given the training 

data set X  and the label vector z, DT recursively partitions the space such that the samples with the 

same labels are grouped together. In order to train the classifier, it becomes essential to specify the 

number of branch nodes (decision splits), the minimum number of branch and leaf node 

observations, and the prior probabilities for each class. A full discussion of the classification decision 

tree is beyond of the scope of this article, and readers are referred to [30] for further details. 

3. Results and Discussion 

To verify the performance and capability of the presented methods, the numerical benchmark 

model discussed in [31] is considered, see Figure 1. The model is a simply supported beam with 

length 5 m, height 0.5 m, and width 0.01 m. 15 sensors are assumed to be installed at the top surface 

of the beam, to provide acceleration time histories in the vertical direction: for each location, the 

measurement period is assumed to last two seconds, and the measurements thus consist of 4001 data 

points. A single vertical crack is considered at mid-span, close to the location of sensor #8. Table 1 

also shows the damage cases allowed for, at varying damage severity or crack length. 

 

Figure 1. The numerical benchmark concrete model [31]. 

Table 1. Structural states considered in the beam model. 

Case Structural state Description 

1 Undamaged No crack 

2 Damaged Crack length = 10 mm 

3 Damaged Crack length = 20 mm 

4 Damaged Crack length = 30 mm 

5 Damaged Crack length = 50 mm 

6 Damaged Crack length = 100 mm 

7 Damaged Crack length = 150 mm 

Out of all the digital pseudo-experimental data, two acceleration responses in the undamaged 

and damaged cases are chosen for feature extraction with both the considered approaches. Therefore, 

the acceleration measurements in this study consist of a matrix with 8002 data points, 15 sensors and 

7 cases. 
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Feature selection is used to extract the parameters of the AR model and the components of PCA, 

using the acceleration data by considering 80% of data (i.e., 3201 data points) for training, 10% of data 

for validation and the remaining 10% for testing, to assess and ensure the accuracy of modelling and 

extracted features. In this study, Bayesian information criterion is adopted to set the order of the AR 

model to 𝑎 = 23, and the least-squares technique is used to estimate the coefficients vector θ of the 

AR model. 

To adopt the components of PCA as damage-sensitive features, a standardization process has 

been enforced for the acceleration histories, so as to have data with zero mean and unit variance. To 

achieve accuracy for the classification task, seven class labels are defined in accordance with the cases 

gathered in Table 1: hence, in order to classify the structural state, the features obtained with the AR 

and PCA models in the damaged scenarios 2-7 have been adopted as test data sets. 

The process of classification based on LDA, QDA, NB and DT is carried out using the training 

and test data sets. To summarize the obtained results, it turns out that LDA is not capable of 

classifying the different damage patterns; in contrast, QDA and NB provide excellent classification 

results using the AR coefficients as damage-sensitive features. If the PCs are instead used as damage-

sensitive features, all the classification methods with the exception of NB fail in giving a reliable 

output. Results of NB thus demonstrate that this method is the only reliable and capable tool for 

classification. 

In order to compare in some details the results of classification using the AR and PCA models, 

Figure 2(a) displays the accuracy of the classification methods on the basis of the classification error 

estimated from the loss function [32], and Figure 2(b) shows instead the corresponding computing 

time. The loss function gives a scalar value representing how well the trained model (classifier) 

classifies the test data. It is shown that NB, independently of the adopted feature selection algorithm, 

has the highest accuracy and a remarkable computational efficiency; LDA, though rather efficient, 

cannot provide reliable classification results, with an accuracy never exceeding 20%; DT turns out to 

be a moderate classification method in terms of accuracy and the best approach with respect to 

computing time, handling either the AR and PCA features. Using QDA, the results of classification 

on the basis of AR coefficients are rather good, whereas those based on the PCs are not and feature 

an accuracy smaller than 20%; furthermore, this method results to be computationally inefficient. 

  
(a) (b) 

Figure 2. Comparison among the considered classification methods, using both AR and PCA feature 

selection approaches: (a) classification accuracy, (b) computing time. 

4. Conclusions 

In this paper, a comparison has been provided of the performances of some efficient methods to 

classify the structural conditions of a cracked concrete beam using the two well-known feature 

selection techniques: AR time series modeling, and PCA. For the process of classification, the 
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coefficients of the AR model and the principal components of the PCA model have been exploited as 

damage-sensitive features. 

The results showed that LDA is not a reliable classification method in the context of SHM, 

resulting in a low accuracy of classification and relatively high computational costs for both of the 

feature selection techniques. By contrast, NB provides classifications with the highest accuracy 

coupled with a computational efficiency. DT is not able to classify the structural conditions as good 

as NB, yet it outperforms LDA; this method is anyway better than LDA and NB in terms of 

computational costs. The results of QDA are affected by the feature selection technique, but it can be 

concluded that this method has a good classification accuracy, though it is associated with the highest 

computing time. 

The main limitation of the considered classification methods is represented by being supervised 

learning algorithms. The supervised format requires data from the damaged states to be always 

available, and this represents a practical challenge to the applicability of the classification methods to 

real-life structures. 

Author Contributions: All the authors contributed in writing, proofreading, and providing suggestions for the 

improvement of the paper. 

Funding: This research received no external funding. 

Acknowledgments: The authors are indebted to Dr. Kullaa for providing the data relevant to the benchmark 

concrete beam. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Capellari, G.; Eftekhar Azam, S.; Mariani, S. Damage detection in flexible plates through reduced-order 

modeling and hybrid particle-Kalman filtering. Sensors 2016, 16, 2, doi:10.3390/s16010002. 

2. Eftekhar Azam, S.; Mariani, S.; Attari, N. Online damage detection via a synergy of proper orthogonal 

decomposition and recursive Bayesian filters. Nonlinear Dyn 2017, 89, 1489–1511, doi:10.1007/s11071-017-

3530-1. 

3. Eftekhar Azam, S.; Mariani, S. Online damage detection in structural systems via dynamic inverse analysis: 

A recursive Bayesian approach. Eng. Struct. 2018, 159, 28–45, doi:10.1016/j.engstruct.2017.12.031. 

4. Sarmadi, H.; Karamodin, A.; Entezami, A. A new iterative model updating technique based on least squares 

minimal residual method using measured modal data. Appl. Math. Model. 2016, 40, 10323–10341, 

doi:10.1016/j.apm.2016.07.015. 

5. Farrar, C.R.; Worden, K. Structural Health Monitoring: A Machine Learning Perspective 2013, John Wiley & 

Sons Ltd. 

6. Entezami, A.; Shariatmadar, H.; Sarmadi, H. Structural damage detection by a new iterative regularization 

method and an improved sensitivity function. J. Sound Vib. 2017, 399, 285–307, doi:10.1016/j.jsv.2017.02.038. 

7. Entezami, A.; Shariatmadar, H. An unsupervised learning approach by novel damage indices in structural 

health monitoring for damage localization and quantification. Struct. Health Monit. 2017, 17, 325–345, 

doi:10.1177/1475921717693572. 

8. Entezami, A.; Shariatmadar, H. Structural health monitoring by a new hybrid feature extraction and 

dynamic time warping methods under ambient vibration and non-stationary signals. Meas. 2019, 134, 548–

568, doi:10.1016/j.measurement.2018.10.095. 

9. Entezami, A.; Shariatmadar, H. Damage localization under ambient excitations and non-stationary 

vibration signals by a new hybrid algorithm for feature extraction and multivariate distance correlation 

methods. Struct. Health Monit. 2019, 18, 347–375, doi:10.1177/1475921718754372. 

10. Sohn, H.; Czarnecki, J.A.; Farrar, C.R. Structural Health Monitoring Using Statistical Process Control. J. 

Struct. Eng. 2000, 126, 1356–1363, doi:10.1061/(ASCE)0733-9445(2000)126:11(1356). 

11. Fugate, M.L.; Sohn, H.; Farrar, C.R. Vibration-based damage detection using statistical process control. 

Mech. Syst. Sig. Process. 2001, 15, 707–721, doi:10.1006/mssp.2000.1323. 

12. Sophian, A.; Tian, G.Y.; Taylor, D.; Rudlin, J. A feature extraction technique based on principal component 

analysis for pulsed Eddy current NDT. NDT & E Intl. 2003, 36, 37–41, doi:10.1016/S0963-8695(02)00069-5. 



Proceedings 2019, 2019 7 of 7 

 

13. Zhong, A.; Song, H.; Han, B. Extracting structural damage features: Comparison between PCA and ICA. 

Intelligent computing in signal processing and pattern recognition, Lectures notes in control and informatic 

Heidelberg: Springer, 2006, 345, 840–845, doi:10.1007/978-3-540-37258-5_101. 

14. Entezami, A.; Shariatmadar, H.; Karamodin, A. Data-driven damage diagnosis under environmental and 

operational variability by novel statistical pattern recognition methods. Struct. Health Monit. 2018, 

doi:10.1177/1475921718800306. 

15. Rezaiee-Pajand, M.; Entezami, A.; Shariatmadar, H. An iterative order determination method for time-

series modeling in structural health monitoring. Adv. Struct. Eng. 2017, 21, 300–314. doi: 

10.1177/1369433217717118. 

16. Entezami, A.; Shariatmadar, H.; Karamodin, A. An improvement on feature extraction via time series 

modeling for structural health monitoring based on unsupervised learning methods. Scientia Iranica 2018, 

doi:10.24200/sci.2018.20641. 

17. Sohn, H.; Worden, K.; Farrar, C.R. Statistical damage classification under changing environmental and 

operational conditions. J. Intell. Mater. Syst. Struct. 2002, 13, 561–574, doi:10.1106/104538902030904. 

18. Niu, G.; Son, J.-D.; Widodo, A.; Yang, B.-S.; Hwang, D.-H.; Kang, D.-S. A comparison of classifier 

performance for fault diagnosis of induction motor using multi-type signals. Struct. Health Monit. 2007, 6, 

215–229, doi:10.1177/1475921707081110. 

19. Gaudenzi, P.; Nardi, D.; Chiappetta, I.; Atek, S.; Lampani, L.; Pasquali, M.; Sarasini, F.; Tirilló, J.; Valente, 

T. Sparse sensing detection of impact-induced delaminations in composite laminates. Compos. Struct. 2015, 

133, 1209–1219, doi:10.1016/j.compstruct.2015.08.052. 

20. Addin, O.; Sapuan, S.; Mahdi, E.; Othman, M. A Naïve-Bayes classifier for damage detection in engineering 

materials. Mater. Design 2007, 28, 2379–2386, doi:10.1016/j.matdes.2006.07.018. 

21. Entezami, A.; Shariatmadar, H.; Mariani, S. Fast unsupervised learning method for structural health 

monitoring with high-dimensional data from dense sensor networks. Struct. Health Monit. 2019, Under 

review. 

22. Entezami, A.; Shariatmadar, H.; Mariani, S. A novelty detection method for early damage assessment in 

large-scale structures under varying environmental conditions. Eng. Struct. 2019, Under review. 

23. Box, G.E.; Jenkins, G.M.; Reinsel, G.C. Time Series Analysis: Forecasting and Control. (Fourth Edition) 2008, 

New Jersey, John Wiley & Sons, Inc. 

24. Mujica, L.E.; Vehí, J.; Ruiz, M.; Verleysen, M.; Staszewski, W.; Worden, K. Multivariate statistics process 

control for dimensionality reduction in structural assessment. Mech. Syst. Sig. Process. 2008, 22, 155–171, 

doi:10.1016/j.ymssp.2007.05.001. 

25. Tibaduiza, D.A.; Mujica, L.E.; Rodellar, J.; Güemes, A. Structural damage detection using principal 

component analysis and damage indices. J. Intell. Mater. Syst. Struct. 2015, doi:10.1177/1045389x14566520. 

26. Fisher, R.A. The use of multiple measurements in taxonomic problems. Ann. Eugen. 1936, 7, 179–188, 

doi:10.1111/j.1469-1809.1936. 

27. McLachlan, G. Discriminant Analysis and Statistical Pattern Recognition 2005, Wiley. 

28. Alpaydin, E. Introduction to Machine Learning 2014, MIT Press. 

29. Coppersmith, D.; Hong, S.J.; Hosking, J.R. Partitioning nominal attributes in decision trees. Data Min. 

Knowl. Discov. 1999, 3, 197–217, doi:10.1023/A:1009869804967. 

30. Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and regression trees 1984, CRC press. 

31. Kullaa, J.; Santaoja, K.; Eymery, A. Vibration-based structural health monitoring of a simulated beam with 

a breathing crack. in Key Eng. Mater. 2013, Trans. Tech. Publ. 

32. Yuan, G.-X.; Ho, C.-H.; Lin, C.-J. Recent advances of large-scale linear classification. Proc. IEEE 2012, 100, 

2584–2603, doi:10.1109/JPROC.2012.2188013. 

 

©  2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


