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Abstract: Deep learning techniques are being widely applied to Human Activity Recognition 

(HAR). This paper describes the implementation and evaluation of a HAR system for daily life 

activities using the accelerometer of an iPhone 6S. This system is based on a deep neural network 

including convolutional layers for feature extraction from accelerations and fully-connected layers 

for classification. Different transformations have been applied to the acceleration signals in order to 

find the appropriate input data to the deep neural network. This study has used acceleration 

recordings from the MotionSense dataset, where 24 subjects performed 6 activities: walking 

downstairs, walking upstairs, sitting, standing, walking and jogging. The evaluation has been 

performed using a subject-wise cross-validation: recordings from the same subject do not appear in 

training and testing sets at the same time. The proposed system has obtained a 9% improvement in 

accuracy compared to the baseline system based on Support Vector Machines. The best results have 

been obtained using raw data as input to a deep neural network composed of two convolutional 

and two max-pooling layers with decreasing kernel sizes. Results suggest that using the module of 

the Fourier transform as inputs provides better results when classifying only between dynamic 

activities. 
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1. Introduction 

Human Activity Recognition has become an important research field due to its wide range of 

applications such as tracking of sport performance [1], patients monitoring in medicine [2] or 

supervision of elderly people at home [3]. 

In the literature, it is possible to find several HAR studies using on on-body sensors [4] or 

smartphones [5]. The later have become popular all over the world and provide numerous sensors 

such as accelerometers and gyroscopes that allow acquiring data from people who continuously carry 

those every day in a less invasive way. 

Signal processing has been applied to acceleration signals in order to provide the best input 

configuration for the classification system. Some works have directly used raw data whereas others 

have performed frequency transforms like Fourier transform or a combination of both strategies [6]. 

Deep learning architectures have been used for both feature extraction and activity classification. 

In recent research, Convolutional Neural Networks (CNNs) [7] and Recurrent Neural Networks 

(RNNs) [8] have been applied as core of deep learning systems for HAR. 

Research works on HAR propose unique signal processing and deep learning techniques for 

classifying the physical activities included in the dataset. 
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The purpose of this work is to build a deep learning system for classifying activities, comparing 

different inputs transforms. This way, it would be possible to select the most appropriate deep 

learning and signal processing strategies for recognizing several types of activities. This study reaches 

the best results for the used dataset. 

2. Materials and Methods 

This section provides a description of the dataset, the signal processing, the deep learning 

architecture and the cross-validation methodology used in this study. 

2.1. Dataset 

For this work, we used the MotionSense dataset, which contains recordings of six different 

physical activities (walking downstairs, walking upstairs, sitting, standing, walking and jogging), 

performed by 24 subjects. These subjects wore in their trousers’ front pocket an iPhone 6S with 

accelerometer and gyroscope sensors, collecting data sampling at 50 Hz. The influence of the 

accelerometer accuracy is negligible because the average bias of the accelerometer is less than 0.004 

g [9]. The experiment took place at the Queen Mary University of London's Mile End campus. 

2.2. Signal Processing 

We implemented a signal processing chain for data collection: pre-process module, 

segmentation and transformation. First, we performed a linear interpolation of raw sensory data from 

the accelerometer for dealing with wireless data loss. Second, we used Hamming windowing to 

divide the data into 3-second windows (150 samples per window) separated by 1 second. Each 

window was labeled by the mode of the classes included in the sample sequence. Third, we used two 

data formats as input of the deep learning architecture. On the one hand, we directly used raw data 

in time domain. Acceleration signals from static activities such as sitting or standing have a particular 

behavior in time domain: they keep an almost constant value. On the other hand, we expanded each 

window to 256 points using zero padding. After that, we obtained the module of the Fast Fourier 

Transform (FFT). Since the FFT is symmetric, we obtained a 128-point representation of the spectrum 

in the 0-25 Hz frequency band. From this representation, we selected the first 100 points of the 

spectrum corresponding approximately to the 0-20 Hz frequency range, discarding negligible energy 

above 20 Hz in these signals. Dynamic activities such as walking or jogging are characterized by 

energy and periodicity, which is noticeable in the frequency domain. Error! Reference source not 

ound. represents the signal processing performed to the acceleration signals. In the dataset, we have 

a total of 27,762 windows. 

 

 

Figure 1. Signal processing performed to the acceleration signals. 

2.3. Deep learning Architecture 
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We implemented a basic deep learning architecture for both inputs: raw data and FFT module. 

After that we adjusted this architecture by increasing the number of convolutional layers and 

modifying the kernels configuration. 

The deep learning architecture that provides the best performance was composed of two 

convolutional and two max-pooling layers with decreasing kernel sizes, as it is shown in Error! 

eference source not found.. 

 

Figure 2. Deep learning architecture used in this work. 

During experimentation, we used several variations of this architecture to select the most 

appropriate configuration for each type of input (raw data or FFT). In these configurations, we used 

decreasing kernel sizes in convolutional and max-pooling layers. This way, we reduced the kernel 

size of the second convolutional layer. The pooling kernel size was half of the previous convolutional 

kernel size. These kernels sizes had the format (1,y) when raw data was used in order to extract 

dependences in time from each coordinate while they had (3,y) when the FFT module was used in 

order to extract dependences over the three coordinates in the frequency domain. 

Regarding the learning algorithm, we used the validation set to adjust the main parameters of 

the deep learning architecture: 15 epochs, batch_size equal to 100 and ReLU as the activation function 

in all intermediate layers. The optimizer was fixed to the root-mean-square propagation method 

using a 0.0005 learning rate and categorical cross entropy as loss function. We used the Glorot 

uniform initializer, also called Xavier uniform initializer, to set the kernel weights of the 

convolutional layers. 

2.4. Subject-Wise Cross-Validation 

In this study, we used a subject-wise three-fold cross-validation. For each iteration, we divided 

data from the 24 subsets into three subsets: one subset including data from 16 subjects (around 20,000 

windows) was used for training, one subset including data from 4 subjects was used for testing and 

one subset including data from 4 subjects was used for validation. Error! Reference source not found. 

hows the subsets for the three iterations of subject-wise cross-validation. This way, recordings from 

the same subject did not appear in training and testing subsets at the same experiment. 

 

 

Figure 3. Subsets for subject-wise cross-validation. 

During experimentation, we selected the performance of the testing subset considering the 

number of epochs that minimizes the error in the validation subset. 

3. Results 
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Error! Reference source not found. shows the mean of accuracy for the subject-wise three-fold 

ross-validation when classifying six activities with raw data as input. This table summarizes the 

experiments performed including different configurations of the network. The kernels size of each 

layer is indicated in the table. For example, the configuration that obtains the best results (95.28%) 

uses two convolutional layers and two max-pooling layers: the first convolutional kernel has (1,15) 

size and its corresponding pooling kernel has (1,8) size while the second convolutional kernel has 

(1,10) size and its corresponding pooling kernel has (1,5) size. 

Table 1. Experiments using raw data for classifying 6 activities. 

Number of 

convolutional 

layers 

Convolutional 

kernels size 

(x,y) 

Pooling 

kernels size 

(x,y) 

Accuracy (%) 

1 (1,10) (1,5) 91.23 ± 0.55 

1 (1,15) (1,8) 92.92 ± 0.50 

1 (1,20) (1,10) 93.21 ± 0.49 

1 (1,30) (1,15) 91.95 ± 0.53 

2 (1,10)/(1,10) (1,5)/(1,5) 92.50 ± 0.51 

2 (1,15)/(1,10) (1,8)/(1,5) 95.28 ± 0.41 

2 (1,15)/(1,15) (1,8)/(1,8) 93.39 ± 0.48 

2 (1,20)/(1,10) (1,10)/(1,5) 91.93 ± 0.53 

2 (1,20)/(1,15) (1,10)/(1,8) 93.77 ± 0.47 

2 (1,20)/(1,20) (1,10)/(1,10) 93.63 ± 0.47 

2 (1,30)/(1,20) (1,15)/(1,10) 91.55 ± 0.54 

 

Error! Reference source not found. shows the mean of accuracy for the subject-wise three-fold 

ross-validation when classifying six activities with the FFT module as input. This table summarizes 

the experiments performed including different configurations of the network. The configuration that 

obtained better results (94.19%) used a convolutional layer and a max-pooling layer: the 

convolutional kernel has (3,6) size and its corresponding pooling kernel has (1,3) size. 

Table 2. Experiments using the FFT module for classifying 6 activities. 

Number of 

convolutional 

layers 

Convolutional 

kernels size 

(x,y) 

Pooling 

kernels size 

(x,y) 

Accuracy (%) 

1 (3,3) (1,2) 93.34 ± 0.48 

1 (3,6) (1,3) 94.19 ± 0.45 

1 (3,9) (1,5) 93.00 ± 0.49 

2 (3,3)/(3,3) (1,2)/(1,2) 93.13 ± 0.49 

2 (3,6)/(3,6) (1,3)/(1,3) 92.83 ± 0.50 

2 (3,6)/(3,3) (1,3)/(1,2) 93.39 ± 0.48 

 

These results are considerably better than those reported in a previous work [10] using Support 

Vector Machines (SVMs): 86.33% of accuracy. 

During this work, we decided to perform experiments for different types of movements. First, 

we classified among the four dynamic activities in the dataset (walking downstairs, walking upstairs, 

walking and jogging) using both raw data and the FFT module as input. Results show that the system 

provides 88.18% of accuracy using raw data input and 90.14% of accuracy when the FFT module is 

used. The same experiments were performed over static activities (sitting and standing) but there 

were no significant differences in the results. 

4. Discussion 
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Results obtained in the previous section validate the use of CNNs for feature extraction and 

activity classification comparing to SVMs technique used in previous work. 

Results suggest that decreasing the kernel size in consecutive convolutional layers and halving 

this size to pooling kernels allows extracting relevant information from signals in the deep neural 

network. 

It is important to select the architecture of the deep neural network depending on the input data. 

Results show that two convolutional layers are needed for extracting features from raw data signals, 

while one convolutional layer is enough when using the FFT module. This suggests that computing 

the FFT to raw data is equivalent to introduce these raw data into one convolutional layer of the deep 

learning architecture. 

Dynamic activities are characterized by periodicity and energy distribution in the frequency 

domain, what is essential to distinguish among activities such as walking and jogging. It was found 

that using the FFT module as neural network input provides better results when recognizing dynamic 

activities comparing to using raw data. 

5. Conclusions 

This paper described the implementation and evaluation of a HAR system for daily life activities 

using acceleration signals from MotionSense dataset. This system was based on a deep neural 

network including convolutional layers for feature extraction and fully-connected layers for 

classification. This study performed different transformations to find the most appropriate input data 

format to the deep neural network. The best results were obtained using raw data as input to the 

deep neural network, composed of two convolutional and two max-pooling layers with decreasing 

kernel sizes. These results showed a 9% improvement in accuracy compared to the baseline system. 

Results suggested that using the module of the Fourier transform as input provides better results 

when classifying only between dynamic activities. 
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