

Autonomous University of Baja California School of Engineering

6th International Electronic Conference on Sensors and Applications

Indoor Localization through Mobile Participatory Sensing and Magnetic Field

Presented by:

Juan Pablo García Vázquez pablo.garcia@uabc.edu.mx

Content

- Problem Context
- Related Work
- Research Aims
- Research Methodology
- Results
- Conclusions
- Future Work

Introducction

- The **location** is the place where an object or person is located [1]
- It can be expressed in form: **Physical** (G: M: S) or **Symbolic** (e.g. living room, dining room, etc.) [2].
- **Importance:** Applications that offer location-based services, for example:

Aims

Technological Approaches for Localization (1/3)

In indoor environments GPS systems are limited - errors up to 50 mts-

[6]http://www.theplace4change.com/blog/2014/09/11/que-son-los-beacons-y-cual-es-su-potencial

Problem Context Related Work		Research Aims	Methodology		Results	Conclusions		4
------------------------------	--	------------------	-------------	--	---------	-------------	--	---

Indoor Localization Approaches (2/3)

Fingerprint

[8] Taheri, A., Singh, A., Emmanuel, A. Location fingerprinting on infrastructure 802.11 wireless local area networks (WLANs) using Loc us. In 29th Annual IEEE International Conference on Local Computer Networks, pp. 676-683, 2004

Problem Context Related Work Research Aims Methodology Results Conclusions

6

Fingerprint Requirements

The measurement is performed by an "expert".

- Has knowledge of the signal of interest (measuring instruments, propagation, units, etc.)
- If the environment changes, the radio map must be updated.
 - Limit its implementation.

- The data collection stage involves high cost and time.
 - For the experience of the expert and specialized team.

Participatory Sensing

Paradigm that empowers multiple users to contribute to data detected or generated on their mobile devices[9].

[9] Estellés-Arolas, E., González, F. Towards an integrated crowdsourcing definition. J. of Information science, 38(2):189-200, 2012.

8

Indoor Localization and Participatory Sensing

Systems for the automatic construction indoor Layouts

Figure 2. CrowdInside (Fuente: Alzantot et al. [11])

The projects do not provide evidence of the use of participatory sensing by collecting the magnetic field signal to generate a radio map used to estimate the location of an individual indoors.

Problem Context Related Work Research Aims Methodology Results Conclusions 9

Research Questions

- What is the accuracy that can be achieved indoors using magnetic field and participatory sensing?
- Which of the classification algorithms used with magnetic field offers the best accuracy?

Research Aim

Determine the feasibility of applying the participatory sensing as a stage of data collection in the technique of the signal fingerprint for the development of an indoor location system.

Specific Research Aims

- Generate a radio map with magnetic field strength measurements collected through Participatory Sensing
- Create a predictive model to estimate the location of an individual in an indoor environment using machine learning algorithms.
- Evaluate the efficiency of the proposed predictive model to estimate the location of an individual in an indoor environment.

- Based on the reference model for the development of data mining projects.
- CRISP-DM (Cross Industry Standard Process for Data Mining) [13].

[13] Wirth, R. CRISP-DM : Towards a Standard Process Model for Data Mining. Proc. of the 4th Intl. Conf. on the Practical Application of Knowledge Discovery and Data Mining, 24959, 29–39, 2000.

Objective: To generate the experimental data set of the magnetic field strength necessary to create the indoor location radio map.

A software component for Android mobile devices was developed that used the magnetometer sensor.

Objective: Provide structure and format to data from distributed open collaboration.

Through the use of the data analysis tool: Opal Convert and Data Normalization.

Objective: Identify the relationships between the different characteristics of the magnetic field intensity associated with a location through a predictive model.

Models were generated using classification algorithms, such as: Decision trees (J48), Nearest neighbors (k-NN), Naïve Bayes.

 Problem Context
 Related Work
 Research Aims
 Methodology
 Results
 Conclusions
 16

Objective: To evaluate the predictive models generated with data from distributed open collaboration.

Metrics were used to measure the accuracy of the algorithm (e.g. confusion matrices)

Phase of data collection

Problem Context Related Work

Research Aims

Methodology

Results

Conclusions

18

Data Collection

A=64 m² B=32m² C, D y E = 55.2 m²

Table . Device Model used in data collection phase

Mobile Device	Magnetometer Model
Sony C6906	AK8963
Sony d6503	Ak09911
Google Nexus 4	LGE
Samsung SM-G531H	YAS537
Google Nexus 7	Invense MPL
Verizon SM_G900V	AK09911C
Sony E5803	Invense Inc.

Fig 4. Layout of Computer System Laboratory

Data Collection

Salón A

Problem Context Related Work

Research Aims

Methodology

Results

Conclusions

20

Results: Data Collection

A total of 701,714 magnetic field intensity measurements were obtained using various devices (see Table 1).

Table 1. Magnetic field intensity measurements per room

Room	Number of measurements
Α	110,679
В	143,352
С	149,135
D	130,708
E	167,840

Number of measurements

Problem Context Related Work

Research Aims

Methodology

Results

Conclusions

21

Phase: Data Processing

Normalization

80	Norm	х	Y	Z
40	71.45603	-26.7822	-57.5988	32.727
20	71.6735	-27.275	-58.1054	31.8893
0	71.9737	-26.7822	-58.612	32.0556
-20	72.70242	-26.6189	-59.1186	32.8948
-40 -60	71.67288	-27.4383	-57.936	32.0556

1	norm	x	У	z
0.8	0.46889872	0.87291086	0.37601084	0.73421909
0.6	0.46506584	0.87291086	0.40091217	0.75491366
0.5	0.46763595	0.87291086	0.37601084	0.75491366
0.3	0.45794481	0.84675914	0.36376692	0.78570049
0.1	0.46512774	0.84675914	0.34919059	0.7691582
0 1	0.46820295	0.85529893	0.34919059	0.7691582

Data Partition

The data was randomly divided into two subsets:

Training 70% Test 30%

[17] C. E. Galván-Tejada, J.P. García-Vázquez, J.I. Galván-Tejada, J. R. Delgado-Contreras, R. Brena, "Infrastructure-less indoor localization using the microphone, magnetometer and light sensor of a smartphone". Sensors, 15(8), 20355-20372, July 2015.

k-NN: Confusion Matrix

Confusion matrix for the generated model with a value of k = 3

Predicction	LAB A	LAB B	LAB C	LAB D	LAB E	Total	%CORRECT	%INCORRECT
LAB A	37,688	288	608	349	366	39,299	95.90%	4.09%
LAB B	281	32,512	166	177	84	33,220	97.86%	2.13%
LAB C	552	169	48,961	359	219	50,260	97.41%	2.58%
LAB D	353	149	417	43,402	447	44,768	96.94%	3.05%
LAB E	338	85	200	453	41,889	42,965	97.49%	2.30%
					TOTAL	210,512	97.12%	2.83%

Referencia

The confusion matrix shows that of the 39,299 data of the LAB A class, 37,688 data were correctly classified with 95.90% and 4.09% incorrectly.

k-NN: Confusion Matrix

Confusion matrix for the generated model with a value of k = 6

	Reference								
Prediction	LAB A	LAB B	LAB C	LAB D	LAB E	TOTAL	%CORRECTAS	%INCORRECTAS	
LAB A	37,345	210	736	288	319	38,898	96.01%	4.09%	
LAB B	306	32,886	193	228	115	33,728	97.50%	2.50%	
LAB C	529	122	48,599	311	193	49,754	97.70%	2.33%	
LAB D	427	103	503	43,471	427	44,931	96.80%	3.20%	
LAB E	370	75	258	535	41,965	43,203	97.13%	2.69%	
					TOTAL	210,512	97.03	2.96%	

In the confusion matrix it is observed that of the 38,898 data of the LAB A class, 37,345 data were correctly classified in 96.01% and 4.09% incorrectly

k-NN: Confusion Matrix

Confusion matrix for the model generated with a value of k = 9

	Referen	ce						
Prediction	LAB A	LAB B	LAB C	LAB D	LAB E	TOTAL	%CORRECT	%INCORRECT
LAB A	37,507	284	693	415	389	39,288	95.46%	4.53%
LAB B	266	32,531	147	170	95	33,209	97.95%	2.04%
LAB C	725	180	48,791	397	265	50,358	96.88%	3.11%
LAB D	386	127	476	43,287	485	44,761	97.70%	3.29%
LAB E	328	81	245	471	41,771	42,896	97.37%	2.43%
					TOTAL	210,512	96.88%	3.11%

In the confusion matrix it is observed that of the 39,288 data of the LAB A class, 37,507 data were correctly classified in 95.46% and 4.53% incorrectly

J48: Confusion Matrix

A decision tree was built from the 701,714 instances collected (70% for training and 30% for evaluation).

	Reference	e						
Prediction	LAB A	LAB B	LAB C	LAB D	LAB E	TOTAL	%CORRECT	%INCORRECT
LAB A	37,498	300	666	406	342	39,212	95.63%	4.37%
LAB B	258	32,564	150	156	75	33,203	98.08%	1.92%
LAB C	709	169	48,779	435	260	50,352	96.88%	3.12%
LAB D	332	175	435	43,319	479	44,740	96.82%	3.27%
LAB E	378	91	263	497	41,776	43,005	97.14%	2.86%
					TOTAL	210,512	96.91%	3.09%

In the confusion matrix it is observed that of the 39,212 data of the LAB A class, 37,498 data were correctly classified in 95.63% and 4.37% incorrectly

Naïve Bayes: Confusion Matrix

The accuracy of the model obtained for this Naïve Bayes algorithm was: 50.77% accuracy with a Kappa of 0.3838.

	Referen	icia						
Prediction	LAB A	LAB B	LAB C	LAB D	LAB E	TOTAL	%CORRECT	%INCORRECT
LAB A	12,688	7,278	4,092	7,563	7,591	39,212	32.35%	67.64%
LAB B	4,602	1,778	3,172	3,199	4,452	33,203	53.54%	46.45%
LAB C	5,418	4,799	20,179	14,126	5,830	50,352	40.07%	59.95%
LAB D	5,192	3,036	5,030	28,265	3,217	44,740	63.17%	36.82%
LAB E	6,279	2,016	3,913	2,954	27,843	43,005	64.74%	30.56%
					TOTAL	210,512	50.77%	48.28%

In the confusion matrix, we observe that of the 39,212 data of the LAB A class, 12,688 data were correctly classified in 32.35% and 67.64% incorrectly

Results: Algorithms Performance

Algorithm	Instances correctly classified in %	Instances incorrectly classified in %	Kappa Coefficient in %
KNN (k=6)	97.03 %	2.96 %	96.27 %
KNN (k=3)	97.12 %	2.88 %	96.39 %
KNN (k=9)	96.88 %	3.11 %	91.89 %
J48	96.91 %	3.09 %	96.17 %
Naïve Bayes	50.79 %	49.21 %	38.34 %

The best performing models were obtained from KNN algorithms with k = 3 and J48, with an accuracy of 97.12% and 96.91% respectively to locate an individual.

The model with the lowest performance was obtained with the naive Bayesian algorithm (Naïve Bayes), since it offers an accuracy of 50.79% and a concordance level of 0.3834.

Conclusions

- It is possible to generate a radio map and predictive model with magnetic field strength data collected through the participatory sensing.
- The classification algorithm affects the results of estimating the location of an individual indoors.

29

Future work

- Explore more robust classification techniques such as SVM, Neural Networks, Random Forest.
- Use other signal features of the magnetic field signal such as time , frequency and statistical.

Autonomous University of Baja California School of Engineering

Thanks for your attention: Questions or Comments

pablo.garcia@uabc.edu.mx