

Proceedings 2019, 2019 www.mdpi.com/journal/proceedings

Proceedings

Robust Detection of Hidden Material Damages Using
Low-Cost External Sensors and Machine Learning †

Stefan Bosse 1,* and Dirk Lehmhus 2

1 Department of Mathematics & Computer Science, University of Bremen, Bremen, Germany;
2 Fraunhofer IFAM, Bremen, Germany

* Correspondence: sbosse@uni-bremen.de;

† Presented at the 6th International Electronic Conference on Sensors and Applications,

15–30 November 2019; Available online: https://ecsa-6.sciforum.net/

Published: 14 November 2019

Abstract: Machine Learning (ML) techniques are widely used in Structural Health Monitoring

(SHM) and Non-destructive Testing (NDT), but the learning process, the learned models. and the

prediction consistency are poorly understood. This work investigates and compares a wide range

of ML models and algorithms for the detection of hidden damages in materials monitored using

low-cost strain sensors. The investigation is performed using a multi-domain simulator imposing a

tight coupling of physical and sensor network simulation in the real-time scale. The device under

test is approximated by using a mass-spring network and a multi-body physics solver.

Keywords: multi-domain simulation; sensor networks; structural health monitoring; machine

learning

1. Introduction

Non-destructive diagnostics and prediction of damages is still a challenge challenge even in

conventional monolithic materials. New materials and hybrid materials, e.g., fiber-metal laminates,

are subject to hidden damages without externally visible change of the material. Well established

measuring techniques are ultra-sonic monitoring and computer tomography using x-rays. Both

techniques suffer from their high instrumental effort and difficulties in diagnostic robustness.

External monitoring of internal damages of such materials and structures with simple and low-cost

external sensors, e.g., strain-gauge sensors, under run-time conditions is of high interest. But there is

a significant gap between knowledge and understanding of damage models and the interpretation

of sensor data. Machine Learning (ML) is a promising method to derive sensor-damage relation

models based on training data. In [1], artificial neural networks with hidden layers were applied to

ultrasonic wave signals to predict structural damages. Although "Deep learning" is attractive and en

vogue, it requires commonly a high amount of training data and learning time (high computational

costs). The investigation of the suitability of and the identification of alternative approaches to Deep

learning with respect to efficiency is addressed in this work.
In this work, a multi-domain simulation study is presented comparing and evaluating different

ML algorithms and models, i.e., decision trees (classical C45, advanced ICE), artificial neural

networks (single and multi-layer perceptrons SLP/MLP), and support vector machines (SVM). A

simple plate is used as a Device under Test (DUT), which is modelled using a simple physical mass-

spring network model (MSN), finally simulated (computed) by a multi-body physics engine. The

physical computation of the DUT under varying load situations in real-time is directly performed by

the simulator combined with an agent-based simulation of signal processing in a Distributed Sensor

Network (DSN). Data processing and learning is performed by a collection of agents implementing

centralised and distributed agent-based learning [2].

Proceedings 2019, 2019 2 of 16

The signals of artificial strain-gauge sensors placed on the top side of the DUT surface are

computed directly from the MSN and are used to predict hidden damages (holes, inhomogeneities,

and impurities) by applying ML to unreliable sensor data. Monte Carlo simulation is used to

introduce noise and sensor failures. There are some surprising results concerning robustness and

usability of different ML algorithms showing that Deep Learning is not always suitable!

The simulator (SEJAM2) combining physical and computational simulation can be used as a

generic tool for investigation of ML, sensing, sensor design, and distributed data processing. The

entire simulation can be controlled by the user via a chat dialogue controlled by an avatar agent. This

feature enables the usage of the simulator for educational purposes, too.

There are three major scientific questions addressed in this work: (1) The suitability and accuracy

of mass-spring models, especially for modelling of damages in materials and the generation of

suitable sensor signals; (2) The suitability of ML for hidden damage detection using noisy and

unreliable low-cost sensors and (3) the comparison of different ML models and algorithms with

respect to their prediction accuracy, learning time, and model data size.

2. Modelling and Simulation

Commonly, the Finite Element Method (FEM) is used to simulate the mechanical behavior of

engineering structures. This numerical approach for, among others, solving continuum mechanics

problems subdivides the component under scrutiny into small, finite elements (hence the name),

solves the partial differential equations describing the respective problem numerically for specific

points within these sub-domains and assembles the results to a global solution via local

approximation functions which match the functional values obtained for the aforementioned Gauss

points and meet certain continuity conditions enforced at transitions between elements. The method

as such is accepted and used so widely that it is almost beyond any need for description, much less

justification.
However, FEM methods do have disadvantages which tend not to matter in normal engineering

analysis, but suddenly become relevant for the investigations – and applications – behind the present

study. Most prominent among these drawbacks is the fact that FEM methods suffer from high

computational costs. Typically, the computational effort scales linearly with the number of elements,

nodes and degrees of freedom (DOF) in the case of static problems, as has e. g. been demonstrated

by Miersch et al. [3].

However, the prerequisite is that sufficient computational resources are available to solve the

problem without decomposition of the matrices. If this is not the case, scaling laws will change

significantly for the worse. Besides, there is a major difference between static and dynamic

simulations, which is based on the fact that the latter are usually performed according to a semi-static

principle: Either automatically or by the user, an initial time step is selected which subdivides the

time span to be covered into several individual stages, for which static simulations are performed.

Even though the length of the time step is typically adjusted during the calculations if stable solutions

can be achieved for larger intervals to limit the computational effort, this typically implies an

extended effort and thus duration of dynamic as opposed to static calculations. The impact of this

general observation on the present study is twofold. It implies that the FEM method would not be

suitable to run on a system which will necessarily have limited computational power as well as

energy resources and will thus need to economize on computational effort.

Besides, it underlines that an FEM approach, specifically under the aforementioned boundary

conditions, is not the optimum choice when real-time solutions are aspired to. For such simulations

and evaluation of sensor networks close to the real world, a faster methodology is required, even if

this should come at the cost of some levels of accuracy.

There are, however, studies on real-time FEM, but in these, the systems consider tend to be of

very low complexity, sometimes with DOF numbers well below 100 [4]. At the same time, alternatives

like reduced order modelling techniques cannot be applied, as they base simplification of the original

model on special characteristics of the same, while the problem we address in the present work

involves damage and thus change of the original system.

Proceedings 2019, 2019 3 of 16

For the above reasons, we have chosen a multi-body system approach to represent the material

of the structure under study. Multi-body physics are thus generally introduced below.

In the next sub-section, the basic concepts of multi-body physics is introduced as an alternative

method for modelling and simulating mechanical structures in real-time order.

2.1. Multi-Body Physics

In its most simple case, multi-body simulation deals with kinematic problems: Rigid bodies are

assumed to be linked by various types of joints, which differ in their degrees of freedom and thus

constrain the respective system’s allowable movements. What is analyzed is motion alone – forces

are not accounted for. Multi-body System Dynamics (MBSD) adds the force component. Now the

rigid bodies can be linked via various types of interactions. These include e. g. friction forces, but can

also simulate materials’ characteristics.
For example, it is possible to connect the rigid bodies via spring- (representing material

stiffness), damper- (representing time-dependent, viscous behavior) or friction-type (representing

ideal plasticity) elements, or combinations of these. In this sense, e.g., viscoelastic properties as seen

in many polymers are constructed by parallel arrangement of spring and damper elements, whereas

elastoplastic behavior is represented by serial connection of a spring and a friction element.

Naturally, the quality of this type of modelling when describing materials rather than structures

does depend on granularity, i. e. on the size of the connected, rigid elements – in fact, in most

problems in which multi-body simulations are practically applied, the scale is macroscopic: Examples

include vehicle dynamics as well as crash simulations in the automotive (see [5] and [6]), including

also bio-mechanical studies [7], or simulations of robotic systems [8].

Several works providing a broad overview of the field both in terms of methods and applications

have been published in recent years, e.g., in [9,5], and [10].

In the current case, though not yet realized in the work we present here, the perspective is

towards the microscopic, and to materials rather than structures. For this purpose, we have built up

a 3D network of mass elements connected by springs in the manner explained in Figure 6. In our

approach, this network reflects the behavior of the material, and future evolutions will be increased

in resolution.

While this approach may seem unusual for MBSD simulation, it does bear some similarities to

some notions behind mesh-free simulation methods like Smoothed Particle Hydrodynamics (SPH),

Discrete Element Method (DEM) or Material Point Methods (MPM), which also represent materials

on a particle basis and through interactions between these particles ([11] and [12]).

Mass-Spring Systems

A mechanical structure is modelled with a Graph St=<M,Sp>, where M is a set of mass nodes

with a specific mass mi, and Sp is a set of spring-damper edges connecting mass nodes.

1 1

() (), () ,

,

j l

i n k m

St P

m m sp sp

m m sp sp



   
   

    
     

M P Sp P

M Sp
 (1)

Each node mi has spring connections that are associated to this node pointing to up to seven

neighbouring nodes (in three dimensions). details can be found in [14].

The general MSN model graph St(P) is paremeterised by a set of parameters defining the node

mass mmi, the spring stiffness constant skj, and optionally a damper constant sdj. The choice of the

parameters, which can be applied to all masses and springs of the network, or individually to

domains of nodes and edges, is crucial for the mapping of real physical material behaviour on the

physical simulation model described in the next section.

Proceedings 2019, 2019 4 of 16

In this work, the node masses and spring constants were chosen to characterise a linear elastic

material, typically a purely elastic elastomer.

2.2. Multi-Domain Simulation

1. Multi-body physics (MBP) using the CANNON physics engine [13]

2. Multi-agent systems and sensor networks using the JAM agent platform

The CANNON physics engine is a constraint based multi-body solver that uses an iterative

Gauss-Seidel solver to solve constraints and the SPOOK stepper.

The software architecture of the multi-domain simulator SEJAM2 is shown in Figure 1 and 2.

The entire simulator is programmed in JavaScript and processed by node-webkit (embedding the V8

JavaScript high-performance engine). Details can be found in [14] and [15].

As already stated in the introductory section, the MBP simulation is faster than classical FEM

simulation by several orders of magnitude. E.g., the simulation of a physical structure consisting of

about 330 mass nodes and 2500 springs requires about 50 μs for one update computation of the

structure (one physical simulation step, calculation of all mass displacements, forces, and spring

forces), using a typical mid-range computer and the JavaScript (JS) V8 engine benchmarking at

22000k C dhrystones/s and 6600k JS/V8 dhrystones/s, respectively.

Computational complexity and concrete computation times for FEM depend on algorithms,

used equation solvers, and the complexity/size of the FEM graph (i.e., the number of elements,

basically). In [4], the FEM computation of a simple model using a 1D model with only 11 elements

was evaluated for a micro-controller with an Arm Cortex 4 core (at 180MHz clock frequency). The

computation time for one static computation (terminating in a stable state) was about one second.

Assuming 5000k C-dhrystones/s/GHz for the used machine, this scales to 50ms on the mid-range

desktop computer (1000 times slower) considered before, finally scaled linearly with respect to the

number of elements (2500/11) it would require about 10s (or even more). The simulation of the

dynamic behaviour investigated in this work requires semi-static step-wise FEM simulation

accumulating the simulation times for each step. A typical dynamic simulation run requires about

1000 steps! In [3], investigation of FEM computation times were made with a 3D model showing a

more or less linear dependency of the computation time on the number of elements. A structure with

about 2000 elements required a computation time of approximately 15 seconds.

The data processing part is performed by agents executed by the JavaScript Agent Machine

(JAM). A physical JAM node supports a world consisting of virtual (logical) nodes (vJAM), which are

used to compose the artificial sensor network in the simulation. I.e., each sensor node in the

simulation world is represented by a vJAM instance. Agents perform sensor sampling, sensor

processing, aggregation, and learning (either centralised by one learning instance or decentralised by

multiple learning instances).

Proceedings 2019, 2019 5 of 16

Figure 1. Architecture of the SEJAM2 multi-domain simulator with tight coupling of physical and

computational simulation of sensor networks.

Figure 2. SEJAM2 software screenshot.

2.3. Synthetic Sensors

The physical MBP simulation is primarily used to compute sensor data passed to the digital

sensor network. There are basically two classes of sensors and measuring techniques used in SHM

and NDT:

1. Strain sensors applied to the surface or integrated in the surface layer of a DUT

2. Ultrasonic acoustic sensors and actuators coupled to the surface of the DUT (active measuring

technique), or more generally acoustic sensors detecting vibrations of the DUT (passive

measuring technique).

Sensor data of the first class can be directly calculated from the mass-spring network requiring

only the distances between mass nodes (available directly from the CANNON engine). A low mass-

node density is still sufficient. The second class requires the simulation of the propagation of elastic

and acoustic (e.g., lamb) waves in the material, which requires a high density of mass-nodes. Figure

3 shows signals of a spatially distributed strain-gauge sensor network attached to the surface of

rectangular plate and getting time-resolved sensor data from the MBP simulation. These plots show

Proceedings 2019, 2019 6 of 16

the fine-grained and highly time-resolved dynamic behaviour of the plate (swinging, starting with

an initial and terminating with a final shape caused by gravity).

Figure 3. Synthetic strain-gauge sensors in a 3x4 network (spatially distributed over a plate DUT

surface, and at each position two perpendicular orientated sensors along x- and y-axis) with dynamic

time-dependent structure behaviour. There was an hidden hole inside the structure near by the left

upper corner. (x-axis: time in simulation steps, y-axis: sensor signal in arbitrary units). Note: y-scales

differ in the single plots.

3. Machine Learning

Machine learning consists basically of three functions:

1. The learned model M(x) mapping an input vector x (sensor data) on an output vector y

(prediction of system state)

2. The training function learn deriving the model function M from (known and labelled) training

data

3. The prediction function apply applying the model function M to unknown (unlabelled) sample

data

Learning and prediction using sensor data can be performed in two dimensions (see Figure 4):

 Spatial domain. The sensor data D(x, t0) consists of data from spatially distributed sensors

(either the entire sensor network or a sub-domain) sampled at a specific time point t0 (or

accumulated over a time period).

 Time domain. The sensor data is time dependent d(t) and time series of single or a set of sensors

are recorded and evaluated.

Proceedings 2019, 2019 7 of 16

Figure 4. (Left) Spatial (a) and temporal (b) sensor data used for learning (Right) Single-instance

centralised (a) and multi-instance decentralised (b) learning with fusion (consensus solving).

0 1

1,1 0 ,1 0

0

1, 0 , 0

1,1 0 ,1 0 1,1 ,1

1, 0 , 0 1, ,

() { (), (), (),.., ()}

() ()

(,)

() ()

() () () ()

(,) ,..,

() () () ()

t n

n

s

m n m

n n

t s

m n m m n m

d t s t s t s t s t

s t s t

D x t

s t s t

s t s t s t s t

D x t

s t s t s t s t





 
 

  
 
 

    
   

     
   
   






 (2)

Finally, learning and prediction can be performed by a single instance using spatially global

sensor data or by multiple distributed instances (e.g., applied to temporal data record). Multiple

learner instances create multiple prediction models mi that must be fusioned to compute a global

prediction.

4. Decision Tree Learner

4.1. Training Sets

The original ID3 algorithm by J. R. Quinlan [16] is an iterative algorithm for constructing

Decision Trees (DT) from a training data set D.
D is a table with columns (x1,x2,..,xn,y) and a number of rows. Each table cell has a value v∈V(x)

(of attribute variable x) and t∈T for the target attribute variable. Each column c(xi) of the variable xi

has a set of values {cv = vi,j : j={1, 2, .., m}}, with m as row number of the data table.

Proceedings 2019, 2019 8 of 16

Table 1. Training data table format.

x1 x2 .. xn y

v1,1 v2,1 .. vn,1 t1

..

v1,m v2,m .. vn,m tm

The main difference between the ID3 and C45 learner and models is related to the data type of

the input variables x. ID3 only supports sets of discrete values or symbols (categorical data), whereas

C45 supports both numerical and categorical data. In case of numerical data, C45 constructs binary

trees with relational edges. Categorical data (variables) produce n-ary trees with edges representing

discrete values of the node variable.

4.2. Entropy

Consider a column of the table, e.g., the target attribute column of y, c(y). There is a finite set of

unique values V={v1,v2,..,vu} that any column c(x) (and c(y)) can hold. Now it is assumed that some

values occur multiple times. The information entropy, i.e., a measure of disorder of the data, of this

(or any other) column c (of variables x/y) is defined by the entropy of the value distribution entropyN:

2

1

2

()

() log ,with

| |
() log ,with

| |

n
i

N i i i

i

v
v v v

v V c

N
entropy N p p p

N

c
entropy c p p p

c





  

  






 (3)

In general, the information entropy of the value distribution of a column c(xi) related to the

outcome of the target variable Y is given by:

()

1 2

(,) ({| () |: }) ,

| |
with and

| |

{| () |: } {| with y = |,| with y = |,..},

v N v

v V c

v
v

v v v i

Entropy T c p entropy c t t T

c
p

c

c t t T c t c t t T



 



  



(4)

with v∈V(c) as the possible unique values of the attribute variable x and T as the values of the

target attribute.

The ID3 algorithm now starts with an empty tree and the full set of attribute variables A={x1,..,xn}

and the full data set D. The entropy for each column is calculated (applying Equations 4 and 5) and

finally the information counting gain for each column with respect to the target attribute distribution

T in this column:

(,) () (,)Gain T c entropy T Entropy T c  (5)

The column c(xi) with the highest gain associated with attribute variable xi is selected for the first

tree node splitting and is removed from the set A. For each value of the attribute occurring in the

selected column a new branch of the tree is created (i.e., each branch contains the rows that have one

of the values of the selected attribute). In the next iteration a new attribute (column) is selected from

the remaining attribute set until there are no more attributes. A zero gain indicates a leave (i.e., all

rows select the same target attribute, i.e., T={t}).

5. ICE Decision Tree Learner

5.1. Noise and Value Intervals

Proceedings 2019, 2019 9 of 16

The ID3 and C45 learning algorithms were designed with categorical data and always

distinguishable numerical data in mind [16]. Two numbers i and j are always distinguishable if i ≠ j,

i.e., they are always different independent how close together the values are. However, real-world

data is noisy, and two numbers can only be distinguished if they are separated at least by a distance

of ε, i.e., they are only considered as different feature values if the noise margin is lower than their

distance. The problem of ambiguous data values is relevant for all DT learners.

For this reason, a hybrid ID3-C45 decision learner algorithm extending variables with ε-intervals

was created (Interval Column Entropy, ICE). The new algorithm is compared with other algorithms

in Sec. VIII. Each data variable xi is assigned an εi value (individually) that is used to transform

column values to 2ε value intervals, i.e., [vx-εi,vx+εi]. Now, the previous entropy and gain

computations are performed with ε-variables and interval arithmetic.

Table 2. Extending data variables with ε value intervals; Only non-overlapping intervals contribute

to the set of unique values Vε⊂V.

x1±ε1 x2±ε2 .. xn±εn y

v1,1±ε1 v2,1±ε2 .. vn,1±εn t1

..

v1,m±ε1 v2,m±ε2 .. vn,m±εn tm

5.2. Gain Computation

The following gain computation is performed for each column of the data training table, shown

in Table2 using interval arithmetic. Instead counting all different values in a column creating the set

V, only non-overlapping 2ε-values are counted as unique values creating the sub-set Vε⊂V.

()

(, ,) (,) (, ,)

(, ,) ({| () |: })

{ : [,] [,] , , , }

v N v

v V c

i i i j j i j

Gain T c entropy T Entropy T c

Entropy T c p entropy c t t T

V c v v v v i j c c c c



 





  



   



 

 

           


(6)

Instead using relational splitting as in the binary trees created by the C45 algorithm (i.e.,

{n1|xi<v,n2|xi≥v}), the ICE algorithm creates n-ary trees with child nodes ni providing interval value

splitting points ({n1|xi∈[v1-ε1,v1+ε1],..}), similar to the ID3 discrete categorical value splits. Each split

interval is computed from column interval values from all rows with the same target variable value

(all rows with the same target variable value create a cluster).

A nearest-neighbour approach is used to find the best matching child node on prediction. Either

a variable value is contained in one of the possible split child node intervals (preferred non-

overlapping), or the child node with nearest distance to its value interval is chosen.

The main advantage of the new ICE algorithm compared to traditional decision tree learners is

the improved gain computation for the selection of suitable and strong feature variables and tree

splitting. The entropy and gain of a feature variable column of the training data table depends on the

number of unique value sets in this column. Without noise consideration, different values

(independent of their distance from each other) lead to a high number of unique values. With

consideration of noise and ε value-intervals, the number of unique values in a column can decrease

significantly, separating strong and weak feature variable columns (with respect to the split

selection).

6. Comparison of Decision Tree Models

Proceedings 2019, 2019 10 of 16

Figure 5. (a) Categorical Data Tree (b) Numerical Relational Data Tree (c) Numerical Interval Tree

with nearest-neighbour approximation (d) Random Forest trees.

7. Global VS. Local Learning

Global learning collects spatially distributed sensor data and processes the entire data with one

learning instance. In contrast, distributed local learning processes the local sensor data (of a node or

a spatially bounded region of nodes). This learning architecture introduces multiple learning

instances, requiring a global consensus algorithm upon prediction to decide one global decision. A

simple type of such consensus algorithm is majority voting.

Global learning can use snapshots (at a specific time) or time-accumulated sensor data to avoid

a large amount of data variables, whereas local learning can process time-resolved data, too, without

exceeding computational complexity that can be handled, e.g., in real-time.

8. Experiments and Evaluation

Experiments were performed using the SEJAM2 simulation environment. A rectangular plate

was used as a typical Device under Test (DUT). Two sides of the plate were fixed by two walls. The

DUT was modelled with the MBP models and a grid size of 14 × 8 × 3 mass nodes connected with

springs (elastic model), shown in Figure 6 (a). Bending by gravity was used a typical load situation.

Starting from an initial state of the DUT, the mass nodes are moved towards the gravity force

direction resulting in a typical bending structure.

The sensor network consists of 3 × 4 sensor nodes, shown in Figure 6 (b). Each node samples two

connected synthetic strain-gauge sensors (orthogonal orientated), shown in Figure 6 (c). The

originally undamaged plate DUT can be modified by adding holes inside (by removing mass nodes

of the DUT) and prediction can be disturbed by applying additional load to the upper surface, shown

in Figure 6 (d).

Proceedings 2019, 2019 11 of 16

Figure 6. (a) MBP Modell of a plate (DUT) (b) Sensor Network applied to surface of DUT (c) Strain-

gauge Sensors connected with sensor nodes (d) Hidden holes in the DUT (red) and additional load

applied to the surface (blue).

The following learning algorithms and models were used:

 Classical decision tree learner (C45)

 Advanced decision tree learner with interval arithmetic and nearest-neighbour approximation

(ICE)

 Random forest tree learner (RF)

 Single-layer perceptrons (one layered artificial neural network, SLP)

 Multi-layer perceptrons (deep learning with hidden layers, MLP)

 Multi-label Support Vector Machines (SVM)

Two different learning domain strategies were investigated:

 Global learning with one learner instance (see Figure 4 a) using a sensor snapshot (after the DUT

dynamics is below a threshold)

 Local learning with 12 node-based learner instances and global fusion (see Figure 4 b) using time

records of the sensor signals (starting with the begin of DUT dynamics)

8.1. Global Learning

With 12 sensor nodes and each sensor node connected with a pair of strain-gauge sensors, there

are 24 input variables. The neural networks consist of 24 input neurons (12 sensor pair feature

variables) and 10 output neurons (nine damage locations and the undamaged case). The multi-label

SVM consists of 10 parallel binary classifier SVMs (one for each damage feature).

Table 3. Comparison of different learned models (200 data sets of all sensors; global learning) showing

learning time and model data size.

ML Parameter Learning Time Modelsize (Bytes)

C45 - 8s 4k

ICE ε=0.01 100ms 16k

Proceedings 2019, 2019 12 of 16

ML Parameter Learning Time Modelsize (Bytes)

SLP iter=1000 1s 190k

MLP1 iter=1000, layershidden = [5] 2s 210k

MLP2 iter=20000, layershidden = [5] 22s 210k

SVM iter=1000, kernel={type: rbf, C:0.5, σ:0.1} 90s 260k

RF depthmax = 10, trees = 5 150ms 1.2M

The various ML algorithms differ in learning time and model data size, shown in Table3 for 200

training data sets. The learners requires accurate setting of a parameter set (except the C45 learner).

The neural networks require the specification of the model architecture (number of hidden layers,

number of neurons, and the neuron interconnect graph), whereas the other model architectures are

automatically determined by the learner (but still influenced by the learning parameters).

The ICE algorithm has the fastest learning time in the milliseconds scale, followed by the random

forest learner. The neural network learners require much higher learning times in order of magnitude

of seconds. Adding hidden layers (here only one hidden layer with five neurons) requires a

significant higher amount of learning iterations (about 10-20 times) to get reasonable prediction

results. The SLP can be trained with less than 1000 iterations and still results in a high prediction

accuracy about 80-98% (see Figure 7), whereas a MLP predicts only noise at 1000 iterations. But the

MLP outperforms the SLP if a high training iteration count greater than 10000 iterations is used, with

the disadvantage of high learning times (up to 100 seconds for 200 training sets). The slowest

algorithm in comparison is SVM as result of the binary classifier nature of SVMs. To provide multi-

label classification, an SVM is required for the prediction of each label (i.e., here 9 damage locations

and the undamaged case label). Although the random forest can compete with the new ICE learner

in learning time, the model size is the largest of all compared models and the prediction results are

on the lower bound in this comparison.

Proceedings 2019, 2019 13 of 16

Figure 7. Simulation results and comparison of different ML algorithms for global learning (a) Test

data used for training (b) Sample data (c) Sample data with additional load distortion (d) Sample data

with random sensor defect.

The computation of the quality confidence marker Q depends in the learned model and

algorithm. For neural networks, the output value of the most significant firing output neuron is used

(range [0,1). SVMs usually uses a threshold function to output a binary set of values (e.g., [-1,1). The

output of the SVM before applying the threshold function can be used an approximation of the Q

marker, although without no strict and fixed bounds. The classical C45 decision tree and the random

forest trees do not deliver any suitable Q marker. In contrast to C45/ID3, the ICE predictor uses

nearest neighborhood estimation to find the best matching path in the decision tree. The distance

from each node variable value to its nearest child node value is used as Q marker (accumulated over

all nodes along a tree search path).

The evaluation results show that the Q confidence marker is not always suitable to give a

measure of trust. There is no strong correlation between the Q value and the correctness probability

in case of the ICE learner. The MLP results show similar Q values (80-90%) for training and sample

data, but the failure rate in the last situation (defect sensors) is significantly increased. The SVM

values for Q are always low (indeed using a best-winner approach selecting the SVM classifier with

the highest output but still negative value!).

8.2. Local Learning

In contrast to the previously evaluated global learning approach using sensor snapshots of all

spatially distributed sensors at a specific time, the local learning approach uses time-resolved records

of the sensor signals with a given capture window (32 samples). Furthermore, each sensor node

implements a single learner instance learning local models that are applied to local sensor data only.

Therefore, the input data vector X consists of 64 variables.

There are only two target labels for each learning instance that have to be classified: (DAMAGE)

meaning a damage was detected within a region around the sensor node (radius of 1.5 sensor distance

Proceedings 2019, 2019 14 of 16

lengths) and (NODAMAGE) meaning no damage within this region was detected. In the evaluation,

the number of "No damage" cases for each node is much higher than the number of "Damage near

by" cases (naturally).

The evaluation of the local learning approach with nine different damage locations and an

unmodified structure is shown in Figure 8. Again, training data tests and sample prediction without

and with disturbance (additional loads, defect sensors randomly chosen) is shown. Different quality

parameters were retrieved from the analysis. The first pair correct/wrong tests each single node

whether the damage within the neighbouring region was correctly found or not. The second pair

gcorrect/gwrong uses global fusion by computing the average position of all sensor nodes detecting a

damage. If the average position is near by the real damage location (within a radius of 1.5 node

distance units), the classification is counted as correct, otherwise as wrong.

Figure 8. Simulation results and comparison of different ML algorithms for local learning (a) Test data

used for training (b) Sample data (c) Sample data with additional load distortion (d) Sample data with

random sensor defect.

All learning algorithms show a high correct-positive and correct-negative single-node prediction

probability with zero or only a few wrong-positive and wrong-negative predictions. But remember

that the NODAMAGE feature has a 10 times higher weight with respect to each single node. The

global fusioned damage prediction quality (with equally distributed weights of the ten different

damage features) show the best result for the SVM learner, although the single local DAMAGE hit

rate is rather low compared with the other learners. In contrast to the global learner, the MLP model

shows lower prediction quality than the SLP. The decision tree learner can still compete with the

complexer neural networks and SVM, leading to a prediction accuracy higher than 80%.

8.3. Efficiency Comparison

The efficiency of a learner is defined by:

p

LD
 (7)

Proceedings 2019, 2019 15 of 16

where p is the prediction accuracy in %, L is the learning time in seconds, and D is the model data

size in kB. In the following Table4 the efficiencies of the different ML algorithms are compared using

the results from the previous sections (global learner instance). The prediction accuracy is an average

value of all four test cases (training data, sample data, sample data with additional loads, and sample

date with random defect sensors).

Table 4. Comparison of efficiencies for different ML algorithms (global learning instance).

C45 ICE SLP MLP SVM RF

3 50 0.5 0.02 0.004 0.4

9. Conclusion

A multi-domain simulation framework realizing tight coupling of physical simulation of

mechanical structures and computational simulation of sensor networks was used to investigate

different ML approaches and algorithms used for the prediction of hidden damages. The main focus

was the deployment of low-cost non-calibrated strain-gauge sensors. It could be shown that simple

decision tree models are generally suitable for damage prediction. A new advanced decision tree

learner ICE was introduced. This learner takes noise of sensor data into consideration leading to

improved models and prediction accuracy. Additionally, this new learner outperforms classical

decision tree learners and neural networks regarding learning time (in milliseconds) and model data

size. The comparison of single and multi-layer neural networks (deep learning) poses no significant

advantage over multi-layer networks with respect to prediction accuracy. All learners can be applied

in the sensor spatial and time-domain, and in centralised single-instance and multiple-instance

decentralised learning architectures. Although SVMs require the highest learning time, they

outperform all other algorithms in multiple-instance decentralised learning architectures using time

records of sensor signals.

References

1. Supreet, A.K., Harley, J., Structural Damage Detection Using Deep Learning of Ultrasonic Guided Waves. In AIP

Conference Proceedings, 2017.

2. Bosse, S. Industrial Agents and Distributed Agent-based Learning. In proceedings of the 3rd International

Electronic Conference on Sensors and Applications. 15–30 November. 2016, DOI:10.3390/ecsa-3-S2004.

3. Miersch, N., Roßmann, R., Holz, C., Grundlagenuntersuchung zu ausgewählten finiten Elementen der

Strukturmechanik für ein einfaches validierbares FE-Modell, Wissenschaftliche Beiträge, TH Wildau, 21

April 2017, vol. 21, pp. 61–70.

4. Mucha, W., Real-time finite element simulations on ARM microcontroller, J. Appl. Math. Comput. Mech.

2017, 16, 109–116.

5. Rahnejat, H. Mult-body dynamics: Historical evolution and application. In Proceedings of the institution

of Mechanical Engineers 214, 1999, pp. 149–173.

6. Sousa, L., Verissimo, P., Ambrosio, J. Development of generic multibody road vehicle models for

crashworthiness. Multibody Sys.Dyn. 2008, 19, 133–158.

7. Ambrosio, J., Quental, C., Pilarczyk, B., Folgado, J., Monteiro, J. Multibody biomechanical models of the

upperlimb. Procedia IUTAM 2011, 2, 4–17.

8. Lee, S.-H., Kim, J., Park, F. C., Kim, M., Bobrow, J. E. Newton-Type Algorithms for Dynamics-Based Robot

Movement Optimization. IEEE Trans. Rob. 2005, 21, 657–667.

9. Schiehlen, W. Multibody System Dynamics: Roots and Perspectives. Multibody Sys.Dyn. 1997, 1, 149–188.

10. Yoo, W.-S., Kim, K.-N., Kim, H.-W., Sohn, J.-H. Developments of multibody system dynamics: computer

simulations and experiments. Multibody Sys.Dyn. 2007, 18, 35–58.

11. Zarate, F., Onate, E.A simple FEM–DEM technique for fracture prediction in materials and structures.

Comp. Part. Mech. 2015, 2, 301–314.

12. Raymond, S. J., Jones, B., Williams, J. R. A strategy to couple the material point method (MPM) and

smoothed particle hydrodynamics (SPH) computational techniques. Comp. Part. Mech. 2018, 5, 49–58.

Proceedings 2019, 2019 16 of 16

13. Hedman, S., CANNON, Available online: http://schteppe.github.io/cannon.js, (accessed on 1.

January.2019)

14. Bosse, S. Lehmhus, D. , Material-integrated cluster computing in self-adaptive robotic materials using

mobile multi-agent systems, Cluster Comput. 2019, 22, 1017–1037; doi 10.1007/s10586-018-02894-x.

15. Bosse, S., Engel, U., Real-time Human-in-the-loop Simulation with Mobile Agents, Chat Bots, and Crowd

Sensing for Smart Cities, Sensors 2019, doi: 10.3390/s19204356

16. Hssina, B. , Merbouha, A. , Ezzikouri, H. , Erritali, M., A comparative study of decision tree ID3 and C4.5,

(IJACSA) Int. J. Adv. Comput. Sci. Appl. 2014.

© 2019 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://schteppe.github.io/cannon.js

