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Abstract: Statistical physics models of social systems with a large number of members, each
interacting with a subset of others, have been used in very diverse domains such as culture dynamics,
crowd behavior, information dissemination and social conflicts. We observe that such models rely on
the fact that large societal groups display surprising regularities despite individual agency. Unlike
physics phenomena that obey Newton’s third law, in the world of humans the magnitudes of action
and reaction are not necessarily equal. The effect of the actions of group n on group m can differ
from the effect of group m on group n. We thus use the spin language to describe humans with this
observation in mind. Note that particular individual behaviors do not survive in statistical averages.
Only common characteristics remain. We have studied two-group conflicts as well as three-group
conflicts. We have used time-dependent Mean-Field Theory and Monte Carlo simulations. Each
group is defined by two parameters which express the intra-group strength of interaction among
members and its attitude toward negotiations. The interaction with the other group is parameterized
by a constant which expresses an attraction or a repulsion to other group average attitude. The
model includes a social temperature T which acts on each group and quantifies the social noise.
One of the most striking features is the periodic oscillation of the attitudes toward negotiation or
conflict for certain ranges of parameter values. Other striking results include chaotic behavior, namely
intractable, unpredictable conflict outcomes.
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1. Introduction

Statistical physics studies large systems of interacting particles using their microscopic properties
[1]. Statistical physics models are suitable for investigating social systems which are composed of
a large number of individuals who interact with each other under a social ambiance which can be
associated with the temperature in physics. These models have been used to study complex social
systems such as culture dynamics, crowd behavior, information dissemination and social conflict. This
is possible [2,3] because the average over large societal groups washes away individual particularities
and retains only common characteristics at the end. We see surprising behavior regularities in opinion
surveys despite individual uniqueness. Many discussions have been found in the literature on the
critique of oversimplification of social dynamics of sociophysics [4]. In particular, social conflicts have
been subject of investigations over the years [5–9]. Many applications to concrete situations such as
the Brexit referendum [10,11], the US election in 2016 [10–12], the Serbia-Herzegovina-Croatia election
in 2018 [13] have been discussed.
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This paper is organized as follows. Section 2 is devoted to the two-group dynamics with
mean-field analysis and Monte Carlo simulations. Section 3 shows the case of three-group dynamics.
Conclusion is given in the last section.

2. Two-Group Dynamics

We use a spin Si to represent the opinion of an individual i in a group. As said in the Introduction,
this spin can be discrete or continuous, depending on the problem and the model we wish to make for
that problem.

2.1. Model—Time-Dependent Mean-Field Theory

On the Renyi-Erdos (equivalent neighbor) network, the mean of preferences s of each group is
proportional to the exponential of the intensity of interactions (negative energy):

SA(t + 1) =
∑MA

s=−MA
ses[J1SA(t)+K12SB(t)]

∑MA
s=−MA

es[J1SA(t)+K12SB(t)]
(1)

SB(t + 1) =
∑MB

s=−MB
ses[J2SB(t)+K21SA(t)]

∑MB
s=−MB

es[J2SB(t)+K21SA(t)]
(2)

We introduce a lag time as we assume the preference s at time t + 1 interacts with the averages SA and
SB at an earlier time t. The time is measured in units of the delay time. The sums on the right hand
sites of Equations (9)–(2) involve the Brillouin function [1]:

B(x, y, J, K, M) = (M +
1
2
)cotanh[(M +

1
2
)(Jx + Ky)]− 1

2
cotanh[

1
2
(Jx + Ky)] (3)

Equations (9)–(2) can be written as:

SA(t + 1) = B(SA(t), SB(t), J1, K12, MA) (4)

SB(t + 1) = B(SB(t), SA(t), J2, K21, MB) (5)

An analysis of the linearized Equations (12) and (13), valid for small SA and SB, gives the region of the
parameter space where an ordered phase (|SA| > 0, |SB| > 0) can exist beside the disordered phase
(SA = SB = 0):

J1 − J1c
K12

J2 − J2c

K21
= 1 (6)

where J1c and J2c are the critical values of the couplings when the two networks are decoupled: if
the states of an individual are −MA,−MA + 1,−MA + 2, ..., MA − 1, MA for A and the similar for B
then J1c = 3/MA(MA + 1) ; J2c = 3/MB(MB + 1). The eigenvalues of the Jacobian ∂[J1(t + 1), J2(t +
1)]/∂[J1(t), J2(t)] are:

λ1,2 =
1
2
[

J1

J1c
+

J2

J2c
±

√
(

J1

J1c
− J2

J2c
)2 + 4

K12

J1c

K21

J2c
] (7)

On the manifold of Equation (6) both eigenvalues are equal to 1. The eigenvalues can become complex
provided K12 ∗ K21 < 0. In such cases the average SA and SB exhibit oscillations as function of time.
The period of such oscillations is given by

Period =
2π

arctan(λI/λR)
(8)
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where λR and λI are the real and imaginary parts of the eigenvalue. When the eigenvalue absolute
value is larger than unity the average S evolves in time to a non-zero value while when the eigenvalue
absolute value is less than unity the average S evolves in time to zero.

We show some results in the following with a few typical sets of parameters.

Figure 1. All graphs are for −K12 = K21 = 0.2. For J1 = J2 < 0.15 the time evolution is decaying
oscillations (not shown). (a) J1 = J2 = 0.15 the state is critical and the amplitude of oscillations does
not decay in time; (b) J1 = J2 = 0.6 the period of oscillations is long; (c) J1 = J2 = 0.7 the SA, SB evolve
in time to non-zero steady state values. The transition from (b) to (c) is discontinuous (not shown).

2.2. Monte Carlo Simulation

We use the Metropolis algorithm [14] to simulate the model presented in the previous subsection:
we calculate the energy of an individual at the time t using the state of the other individuals of his/her
group and the average field of the other group at time t. We update his/her state according to the
Metropolis algorithm, before taking another individual for updating until all individuals of two groups
are updated. This achieves on Monte Carlo step. Unlike problems of statistical physics at equilibrium,
here we would like to follow the individuals with time evolution. We need just to equilibrate the
groups at T separately (this take times), and turn on the interaction between them. We follow how
each group evolves with t.

We change the notations here: in the mean-field theory above, the "social temperature" has been
included in the definitions of J1, J2, K12 and K21. Here we explicitly express it by J1 = JA/T, J2 = JB/T,
K12 = KAB/T and K21 = KBA/T.

The size of N = 1600 individuals is used for each group with periodic boundary conditions so
that individuals being at the borders of the group have the same number of neighbors. This order of
size is what is used in opinion surveys so that a precision of a few percents since the uncertainty is
proportional to 1/

√
N near the change of phase.

As an example we take the case qA = qB = 7 (M ≡ MA = MB = 3) with an antisymmetric
−KAB = KBA. The two groups in the absence of interaction and with interaction at long-time average
are shown in Figure 2.
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Figure 2. (a) Before interaction JA = JB = 0.02, qA = qB = 7, initial conditions SA = −SB = 3, both
groups become "disordered" at T0

c ' 102 (arbitrary unit), (b) With inter-group interaction −KAB =

KBA = 0.005, both groups become "disordered" at Tc = 53.

The time evolution of the two groups’ stances is shown in Figure 3 at three social temperatures: at
low T two groups are stable with opposite stances, at intermediate T their stances oscillate (periodic
change of stance), and at high T they oscillate chaotically.

Figure 3. Dynamics of two groups upon interaction −KAB = KBA = 0.005 with JA = JB = 0.02,
qA = qB = 7, initial conditions SA = −SB = 3: (a) at "social temperature" T = 48 below Tc = 53 where
both groups are “ordered”, (b) at “social temperature” T = 74 between Tc and T0

c = 102 (values given
in the caption of Figure 2), (c) at T = 125 above T0

c in the initial disordered phase of both groups. See
text for comments.

These results have been discussed in relation with the Brexit referendum [10,11].
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3. Three-Group Dynamics

3.1. Mean-Field Results

s1(t + 1) =
∑M1

s=−M1
ses(j1s1(t)+k12s2(t)+k13s3(t))

∑M1
s=−M1

es(j1s1(t)+k12s2(t)+k13s3(t))
, (9)

s2(t + 1) =
∑M2

s=−M2
ses(j2s2(t)+k23s3(t)+k21s1(t))

∑M2
s=−M2

es(j2s2(t)+k23s3(t)+k21s1(t))
, (10)

s3(t + 1) =
∑M3

s=−M3
ses(j3s3(t)+k31s1(t)+k32s2(t))

∑M3
s=−M3

es(j3s3(t)+k31s1(t)+k32s2(t))
(11)

where jn = Jn/T and kn,m = Kn,m/T for n,m = 1, 2 , 3. We use units such that kB = 1. Note that in
Equations (9)–11), s at time t + 1 interacts with the averages s1, s2 and s3 evaluated at an earlier time
t. Here time is measured in units of the delay time. The sums on the right hand sides of Equations
(9)–11) give

s1(t + 1) = B(s1(t), s2(t), s3(t), j1, k12, k13, M1) (12)

s2(t + 1) = B(s2(t), s3(t), s1(t), j2, k23, k21, M2) (13)

s3(t + 1) = B(s3(t), s1(t), s2(t), j3, k31, k32, M3) (14)

This model depends on 3 values M, 3 values of the intra-network couplings J, and 6 values of
the inter-network couplings K. We consider next only M ≡ M1 = M2 = M3 = 3 as in the above
two-group case.

Figure 4. In this figure and for all following figures, groups 1, 2 and 3 are represented by red, blue and
green symbols, respectively. (a)–(c) Damped oscillations at high T for groups 1, 2 and 3, respectively:
T = 1.45; (d) Spiral trajectory to disorder. For color codes, see Figure 1. J1 = 0.15, J2 = 0.35, J3 = 0.25,
K12 = −0.2, K21 = 0.2, K23 = 0.1, K32 = 0.1, K31 = 0.15, K13 = −0.15.

At lower temperatures T = 1.0 the oscillations are sustained and the three groups’ attitudes are
synchronized exhibiting the same period, (see Figure 5). The trajectory in the (s1, s2, s3) space evolves
in the long run to a closed-loop attractor shown in Figure 5.
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Figure 5. (a)–(c) Synchronized sustained oscillations for groups 1, 2 and 3, respectively at T = 1.0; (d)
Closed loop attractor. For color codes and values of parameters, see Figure 4.

Lowering the temperatures increases the period of oscillations, and the closed-loop attractor
begins to fragment (Figure 6 and Figure 7).

Figure 6. (a) Synchronization; (b) Fragmented attractor. T = 0.5. For color codes and values of
parameters, see Figure 4.

We argue that the higher temperature attractor represents the essence of acute intractability: there
is no single point at which the conflict settles, but rather a never-ending (non-sequential) cycling occurs
among possible outcomes on the attractor.

At lower temperatures the attractor fragments into a discreet number of fixed points. The system
still cycles among them but the discrete configuration corresponds to a lower degree of intractability
than the continuous attractor (Figure 4).
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Figure 7. (a) Synchronization; (b) Fragmented attractor. T = 0.465. For color codes and values of
parameters, see Figure 4.

At very low temperatures the attractor collapses into a single point that corresponds to the ordered
phase of the static model. Because of the symmetry S→ −S there is another static solution where all
the attitude values are replaced by their negatives.

3.2. Monte Carlo Simulation

Monte Carlo simulations have been carried out as described in Section 2 but with three groups.
An example is shown in Figure 8. For each group, there is a social temperature TC beyond which the
stance of a group is lost, namely s = 0. We see that TC is not the same for three groups: the higher the
intra-group interaction J, the higher TC threshold.

Figure 8. Stance of the 3 groups as a function of social temperature T before inter-group interactions
are turned on. J1 = 0.15, J2 = 0.35, J3 = 0.25. For color codes, see Figure 4. See text for comments.

As in the mean-field calculation above, an individual in a given group interacts at the time t + 1
with the average of the action field created by the other groups at the earlier time t. The only difference
from the mean-field calculation is the short-range interaction considered in the Monte Carlo simulation.
We will see that the results differ in some important aspects.
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Once the equilibrium is reached for each group, we turn on the interactions between groups at
time t.

An example at low T is shown in Figure 8 where the inter-group interactions may or not destroy
the order of a group. We have chosen the interaction strengths and signs in the example below to
illustrate the case of Serbia-Herzegovina-Croatia 2018 election [13].

At higher T, the order of each group is weakened. The inter-group interactions cause the groups’
stances to oscillate widely without periodicity as also seen in the long-range mean-field results above.
We observe that at times the stronger group 2 dominates the other two. This pattern reflects the level
of intractability of the three-group conflict simulated here, consistent with the longer-term mean-field
results. While the conflict is intractable at all the temperatures of Figure 9, at the lower temperature
(corresponding to a stable context) the groups are ‘stuck’ in predictable ways (see Figure 9a); as the
context gets heated, the three-group system cycles unpredictably through various stages (Figure 9b
and c).

These results have been discussed in the case of Serbia-Herzegovina-Croatia election in 2018. The
parameters used in Figure 9 correspond to the situation of this three-group competition [13].

Figure 9. Time-dependence of 3 groups’ stances at low temperatures (for color codes, see Figure 4): (a)
T = 2.5254,all three groups are ordered; (b) T = 5.8474, groups 1 and 3 are disordered, group 2 is not
disordered; (c) T = 7.5084, all 3 groups are disordered. The same parameters as in Figure 8 have been
used: J1 = 0.15, J2 = 0.35, J3 = 0.25, K12 = −0.20, K21 = 0.20, K13 = −0.15, K31 = 0.15, K23 = 0.10,
K32 = 0.10.

4. Conclusions

We have shown in this paper that statistical physics is a suitable tool to study social conflicts. In
particular, we have outlined the Mean-Field Theory and the Monte Carlo simulation for the two- and
three-group conflicts. We have shown the importance of the inter-group interaction which is at the
origin of the fluctuation of the group stances if the social temperature is in a region of social instability.
Intractability of conflicts is also seen with an appropriate choice of those parameters.
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Generalizing the above methods to other social phenomena is possible, in particular in the domain
of macro-economy [15].
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