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Geometric setting (1) The mind and statistics

 M': manifold that stands for (a part of) the mind of an agent.
* Each point of M presents a probability density function on R".

* Fix the state IV € V = {volume forms with finite total on M} of M.
Then any statistic f: M = R™ obeys a probability distribution.
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The proportion in M by volume defines the probability.

This probability distribution is the FULL estimation of the statistic f.
(A value and a confidence interval with error bar are not enough!)



Geometric setting (2) Bayesian updating

* Given a point z € R", the agent updates VV € V in the following way:
Each point y of the mind M presents a probability density p,, of R".
Change it to the likelihood p(z)(y) = p,(z), and define the map

@:R*" XV 3 (z,V) » p(z)V € V: “updating map”.

* Example.

M ={N,2)|ueR*}(XeP,), f=u M- R"

This is the estimation of the mean u of a normal distribution with a

fixed covariance X in the space P, of positive definite real symmetric

matrix. Then the updating map is ¢ (z,V) = N(z,2)V € V, namely,
V> N(z;,2)V » N(z,, X)N(z, 2)V > -

(The symmetry N(u, 2)(z) = N(z,2)(u) implies p(z) = N(z,2).)



Geometric setting (3) Conjugate prior

 Our subject is the updatingmap @: R* XV 3 (z,V) » p(2)V € V.

» Conjugate prior is a proper subset U c V with ¢(R" x U) < U.
PuttingU ={V € U|[,,V =1}, wehave U = {kV |V €U, k > 0}.

* Example. M ={N(u,2)|u e R*} X €P,), f=u M - R"™ Put
U = {N(m,A)dVol |m € R"?, A € P(n,R)} = U: conjugate prior.

e Suppose that the conjugate prior U is a manifold. We fix a ““distance”
D: U x U - R, which satisfies non of the axioms of distance, as

~ V
DV, V,) = f Vi anZ (the relative entropy)
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* The restriction 5|'u><'u = D is non-negative (KL-divergence).



Geometric setting (4) Bayesian Information Geom.

* Each y € M presents a volume form p,,dVol on R™(3 z).

* Given points z4, Z, ... € R™, one updates the prior P € U as
P = p(z)P » p(z3)p(21)P » - (P(Z)(Y) = Py(Z))-
This corresponds to a point move on U by normalizing the density.

* Generalized IG = the Fisher metric g & a-connections V — ag*T
g: the quadratic term of D(P,P + dP) + D(P + dP, P)
T: the cubic term of 3D(P,P + dP) — 3D(P + dP, P)

The usual I1G looks at the restrictions to the hypersurface U.

Bayesian IG is the geometric study on the updating maps in U and U.



Example of Bayesian |G (1) Two operations
* U = y presents exp (—%(Z —w'r 1z - ,u)) dVol on R"*(3 z).
* We have U = {N(m, 4A)dVol |m € R*, 4 € P(n,R)} and U.

* If Z repeats, the agent updates e.g. exp (— % ||,u||2) dVol € U into
1 n
p(2)"V = exp (- o [l = > (=" 2 (- 3’)) dVol.

* Two operationson U = {N(m,A)dVol | m e R", A € P(n,R)}:
“x” from the convolution N(m, 4) * N(m', A") presenting z + z’,
“.” from the normalized pointwise product kN(m,A) - N(m', A").

The above updating roughly corresponds to the iteration of “-” on ‘U.



Example of Bayesian |G (2) Symmetry of D
e Assume n = 1 (temporarily). Write P = (m,s) € U, where A = s?.
N(m,A) * N(m',A) =N(m+m',A+A)=>P+P =(m+m/ Vs2 +s'2)
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* The correspondence F = {((m, s), (M, S)) | ?+% =0, sS = 1}
defines a diffeomorphism of U which interchanges “+” and “-”, i.e.,
(o, P),,P)eF(cUXU > (p=*p,P-P),(p-p,P+P')EF.

* Take the “stereogram” f(p,P) = D(p,p’) of D under (p',P) € F.
Then f: U X U — R is preserved under the transformations

((m,s), M, S)) » ((etm,ets), (e *M,e~tS)) (t € R)
Perhaps this is the first found symmetry of the KL-divergence D.




Example of Bayesian |G (3) Symplectic geometry

* The space U X U carries the positive&negative symplectic structures
__dmAds dMAdS d_m + d_M

Ay = T = s S

* Restricting the primitives 1, to the hypersurface N = {sS = 1}(2 F),
we obtain a bi-contact structure, i.e., a transverse pair of positive &
negative contact structures. Then A, are their natural extensions.

2 and their primitives 1, =

* In general, a contact form n & a function h on a manifold M determine
the contact Hamiltonian vector field X vian(X) = h&n A Lyn = 0.
X is the push-forward of the Hamiltonian vector field of eh on the
product R(3 t) X M with respect to the symplectic form d(e'n).

es=e U S =7 o ), =ef(e¥dm e ¥dM), N = {t = 0}.

* Unless h = h(m, s), there is no bi-contact Hamiltonian vector field.



Example of Bayesian |G (4) The Bayesian flow

* The correspondence F c U X U is Lagrangian with respect to dA_.

* There is a bi-contact Hamiltonian flow preserving the correspondence
Fc N(cUXU). Itisthe one for the function h = k% (k € R).

* The restriction of the flow to the correspondence F can be presented
by a flow on the second factor. Then the flow interpolates the iteration
of “-” product in a logarithmic time. Thus we call it the Bayesian flow.

* The diffeomorphism of U defined by F c ‘U X U sends any e-geodesic
to an e-geodesic (as a image). Particularly, the iteration of “*” product
is a discretization of an e-geodesic, which the diffeomorphism sends to

a flow line of the above Bayesian flow.

* This has an application concerning the smoothness of a smoothing.



Example of Bayesian IG (5) Multivariate Case

* Take the extended Cholesky decomposition of the covariance A.

* This defines the fiber-bundle projection (and therefore the foliation by
fibers) of the space of normal distributions to the unitriangular group.

* Then the fibers (i.e., the leaves) have special properties:
* They are affine (thus flat) with respect to the e-connection.

* They are closed under the two operations “*” and “-”.

* The product of any two leaves carries a pair of symplectic forms,
the Lagrangian correspondence, the bi-contact hypersurface, and

the Bayesian bi-contact Hamiltoninan flow.
* The Bayesian approach could explain the extra dimensions in physics.




