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Geometric setting (1) The mind and statistics 

• ℳ: manifold that stands for (a part of) the mind of an agent.

• Each point of ℳ presents a probability density function on ℝ𝑛.

• Fix the state 𝑉 ∈ 𝒱 = volume forms with finite total on ℳ of ℳ. 
Then any statistic 𝑓:ℳ → ℝ𝑚 obeys a probability distribution.

ℳ 𝑓 ℝ𝑚

ℝ𝑛(∋ 𝑧) 𝑉 /𝑑Vol=density

w/ probability      𝑦 𝑓 𝑦

This probability distribution is the FULL estimation of the statistic 𝑓.     
(A value and a confidence interval with error bar are not enough!)

The proportion in ℳ by volume defines the probability.



Geometric setting (2) Bayesian updating  

• Given a point 𝑧 ∈ ℝ𝑛, the agent updates 𝑉 ∈ 𝒱 in the following way:
Each point 𝑦 of the mind ℳ presents a probability density 𝜌𝑦 of ℝ𝑛.  

Change it to the likelihood 𝜌 𝑧 𝑦 = 𝜌𝑦(𝑧), and define the map

𝜑:ℝ𝑛 × 𝒱 ∋ 𝑧, 𝑉 ↦ 𝜌 𝑧 𝑉 ∈ 𝒱: “updating map”.

• Example. 
ℳ = N 𝜇, 𝛴 | 𝜇 ∈ ℝ𝑛 𝛴 ∈ 𝒫𝑛 , 𝑓 = 𝜇: ℳ → ℝ𝑛.

This is the estimation of the mean 𝜇 of a normal distribution with a 
fixed  covariance 𝛴 in the space 𝒫𝑛 of positive definite real symmetric 
matrix. Then the updating map is 𝜑 𝑧, 𝑉 = N 𝑧, 𝛴 𝑉 ∈ 𝒱, namely,

𝑉 ↦ N 𝑧1, 𝛴 𝑉 ↦ N 𝑧2, 𝛴 N 𝑧1, 𝛴 𝑉 ↦ ⋯ .

(The symmetry N 𝜇, 𝛴 𝑧 = N 𝑧, 𝛴 𝜇 implies 𝜌 𝑧 = N(𝑧, 𝛴).)



Geometric setting (3) Conjugate prior

• Our subject is the updating map 𝜑:ℝ𝑛 × 𝒱 ∋ 𝑧, 𝑉 ↦ 𝜌 𝑧 𝑉 ∈ 𝒱.

• Conjugate prior is a proper subset ෨𝒰 ⊂ 𝒱 with 𝜑 ℝ𝑛 × ෨𝒰 ⊂ ෨𝒰. 

Putting 𝒰 = 𝑉 ∈ ෨𝒰 | ℳ׬ 𝑉 = 1 , we have ෨𝒰 = 𝑘𝑉 | 𝑉 ∈ 𝒰, 𝑘 > 0 . 

• Example.  ℳ = N 𝜇, 𝛴 | 𝜇 ∈ ℝ𝑛 𝛴 ∈ 𝒫𝑛 , 𝑓 = 𝜇: ℳ → ℝ𝑛. Put 
𝒰 = N 𝑚,𝐴 𝑑Vol | 𝑚 ∈ ℝ𝑛, 𝐴 ∈ 𝒫 𝑛,ℝ ⇒ ෨𝒰: conjugate prior.

• Suppose that the conjugate prior ෨𝒰 is a manifold. We fix a ``distance’’ 
෩𝐷: ෨𝒰 × ෨𝒰 → ℝ , which satisfies non of the axioms of distance, as 

෩𝐷 𝑉1, 𝑉2 = න
ℝ𝑛
𝑉1 ln

𝑉2
𝑉1

the relative entropy

• The restriction ෩𝐷|𝒰×𝒰 = 𝐷 is non-negative (KL-divergence).



Geometric setting (4) Bayesian Information Geom.

• Each 𝑦 ∈ ℳ presents a volume form 𝜌𝑦𝑑Vol on ℝ𝑛 ∋ 𝑧 .

• Given points 𝑧1, 𝑧2, … ∈ ℝ𝑛, one updates the prior 𝑃 ∈ ෨𝒰 as

𝑃 ↦ 𝜌 𝑧1 𝑃 ↦ 𝜌 𝑧2 𝜌 𝑧1 𝑃 ↦ ⋯ 𝜌(𝑧)(𝑦) = 𝜌𝑦(𝑧) .

This corresponds to a point move on 𝒰 by normalizing the density. 

• Generalized IG = the Fisher metric 𝑔 & 𝛼-connections 𝛻 − 𝛼𝑔∗𝑇

𝑔: the quadratic term of ෩𝐷 𝑃, 𝑃 + 𝑑𝑃 + ෩𝐷(𝑃 + 𝑑𝑃, 𝑃)

𝑇: the cubic term of 3෩𝐷 𝑃, 𝑃 + 𝑑𝑃 − 3෩𝐷 𝑃 + 𝑑𝑃, 𝑃

The usual IG looks at the restrictions to the hypersurface 𝒰. 

Bayesian IG is the geometric study on the updating maps in ෨𝒰 and 𝒰.



Example of Bayesian IG (1) Two operations

• 𝜇 = 𝑦 presents exp −
1

2
𝑧 − 𝜇 T𝛴−1(𝑧 − 𝜇) 𝑑Vol on ℝ𝑛(∋ 𝑧).

• We have 𝒰 = N 𝑚,𝐴 𝑑Vol | 𝑚 ∈ ℝ𝑛, 𝐴 ∈ 𝒫 𝑛,ℝ and ෨𝒰.

• If 𝑧 repeats, the agent updates e.g. exp −
1

2𝑣
𝜇 2 𝑑Vol ∈ ෨𝒰 into

𝜌 𝑧 𝑛𝑉 = exp −
1

2𝑣
𝜇 2 −

𝑛

2
𝜇 − 𝑦 T 𝛴−1(𝜇 − 𝑦) 𝑑Vol.

• Two operations on 𝒰 = N 𝑚,𝐴 𝑑Vol | 𝑚 ∈ ℝ𝑛, 𝐴 ∈ 𝒫 𝑛,ℝ :

“∗” from the convolution N 𝑚, 𝐴 ∗ N 𝑚′, 𝐴′ presenting 𝑧 + 𝑧′,

“⋅” from the normalized pointwise product 𝑘N 𝑚,𝐴 ⋅ N 𝑚′, 𝐴′ .

The above updating roughly corresponds to the iteration of “⋅” on 𝓤. 



Example of Bayesian IG (2) Symmetry of D
• Assume 𝑛 = 1 (temporarily). Write 𝑃 = 𝑚, 𝑠 ∈ 𝒰, where 𝐴 = 𝑠2.

N 𝑚,𝐴 ∗ N 𝑚′, 𝐴′ = N 𝑚 +𝑚′, 𝐴 + 𝐴′ ⇒ 𝑃 ∗ 𝑃′ = 𝑚 +𝑚′, 𝑠2 + 𝑠′2

N 𝑚,𝐴 ⋅ N 𝑚′, 𝐴′ = N
𝑚𝐴′+𝐴𝑚′

𝐴+𝐴′
,
𝐴𝐴′

𝐴+𝐴′
⇒ 𝑃 ⋅ 𝑃′ =

𝑚𝑠′2+𝑚′𝑠2

𝑠2+𝑠′2
,

𝑠𝑠′

𝑠2+𝑠′2

• The correspondence  𝐹 = 𝑚, 𝑠 , 𝑀, 𝑆 |
𝑚

𝑠
+

𝑀

𝑆
= 0, 𝑠𝑆 = 1

defines a diffeomorphism of 𝒰 which interchanges “∗” and “⋅”, i.e.,

𝑝, 𝑃 , 𝑝′, 𝑃′ ∈ 𝐹 ⊂ 𝒰 ×𝒰 ⇒ 𝑝 ∗ 𝑝′, 𝑃 ⋅ 𝑃′ , 𝑝 ⋅ 𝑝′, 𝑃 ∗ 𝑃′ ∈ 𝐹.

• Take the “stereogram” 𝑓 𝑝, 𝑃 = 𝐷 𝑝, 𝑝′ of 𝐷 under 𝑝′, 𝑃 ∈ 𝐹. 
Then 𝑓: 𝒰 × 𝒰 → ℝ is preserved under the transformations

𝑚, 𝑠 , 𝑀, 𝑆 ↦ 𝑒𝑡𝑚, 𝑒𝑡𝑠 , 𝑒−𝑡𝑀, 𝑒−𝑡𝑆 𝑡 ∈ ℝ

Perhaps this is the first found symmetry of the KL-divergence 𝐷.



Example of Bayesian IG (3) Symplectic geometry
• The space 𝒰 ×𝒰 carries the positive&negative symplectic structures 

𝑑𝜆± =
𝑑𝑚∧𝑑𝑠

𝑠2
±

𝑑𝑀∧𝑑𝑆

𝑆2
and their primitives 𝜆± =

𝑑𝑚

𝑠
±

𝑑𝑀

𝑆
. 

• Restricting the primitives 𝜆± to the hypersurface 𝑁 = 𝑠𝑆 = 1 ⊃ 𝐹 , 
we obtain a bi-contact structure, i.e., a transverse pair of positive & 
negative contact structures. Then 𝜆± are their natural extensions. 

• In general, a contact form 𝜂 & a function ℎ on a manifold 𝑀 determine 
the contact Hamiltonian vector field 𝑋 via 𝜼 𝑿 = 𝒉 & 𝜼 ∧ 𝓛𝑿𝜼 = 𝟎. 
𝑋 is the push-forward of the Hamiltonian vector field of 𝑒𝑡ℎ on the 
product ℝ ∋ t × 𝑀 with respect to the symplectic form 𝑑(𝑒𝑡𝜂).

• 𝑠 = 𝑒−𝑡−𝑢, 𝑆 = 𝑒−𝑡+𝑢 ⇒ 𝜆± = 𝑒𝑡 𝑒𝑢𝑑𝑚 ± 𝑒−𝑢𝑑𝑀 , 𝑁 = 𝑡 = 0 .

• Unless ℎ = ℎ(𝑚, 𝑠), there is no bi-contact Hamiltonian vector field.



Example of Bayesian IG (4) The Bayesian flow 
• The correspondence 𝐹 ⊂ 𝒰 × 𝒰 is Lagrangian with respect to 𝑑𝜆−. 

• There is a bi-contact Hamiltonian flow preserving the correspondence 

𝐹 ⊂ 𝑁 ⊂ 𝒰 ×𝒰 . It is the one for the function ℎ = 𝑘
𝑚

𝑠
𝑘 ∈ ℝ . 

• The restriction of the flow to the correspondence 𝐹 can be presented 
by a flow on the second factor. Then the flow interpolates the iteration 
of “⋅” product in a logarithmic time. Thus we call it the Bayesian flow. 

• The diffeomorphism of 𝒰 defined by 𝐹 ⊂ 𝒰 × 𝒰 sends any e-geodesic 
to an e-geodesic (as a image). Particularly, the iteration of “∗” product 
is a discretization of an e-geodesic, which the diffeomorphism sends to 
a flow line of the above Bayesian flow. 

• This has an application concerning the smoothness of a smoothing.



Example of Bayesian IG (5) Multivariate Case 
• Take the extended Cholesky decomposition of the covariance 𝐴.

• This defines the fiber-bundle projection (and therefore the foliation by 
fibers) of the space of normal distributions to the unitriangular group. 

• Then the fibers (i.e., the leaves) have special properties:

• They are affine (thus flat) with respect to the e-connection.

• They are closed under the two operations “∗” and “⋅”.

• The product of any two leaves carries a pair of symplectic forms, 
the Lagrangian correspondence, the bi-contact hypersurface, and 
the Bayesian bi-contact Hamiltoninan flow.

• The Bayesian approach could explain the extra dimensions in physics.


