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Abstract: The Mediterranean diet (MD) is recognized as one of the healthiest diets worldwide and 

is associated with the prevention of cardiovascular and metabolic diseases, among others. Dietary 

habits are considered one of the strongest modulators of the gut microbiota, which seems to play a 

significant role in the health and disease of the host. The purpose of the present study was to 

evaluate interactive associations between gut microbiota composition and habitual dietary intake in 

360 Spanish adults of the Obekit cohort (normal weight, overweight and obese subjects). Dietary 

intake and adherence to the MD tests together with fecal samples were collected from each subject. 

Fecal 16S rRNA sequencing was performed and checked against the dietary habits. MetagenomeSeq 

was the statistical tool applied to analyse at species taxonomic level. Results from this study confirm 

that a strong adherence to the MD increases the population of some beneficial bacteria improving 

microbiota status towards a healthier pattern. Bifidobacterium animalis is the species with the 

strongest association with the MD. One of the highlights is the positive association between several 

SCFA-producing bacteria and high adherence to MD. In conclusion, this study shows that MD, fibre, 

legumes, vegetables, fruit and nuts intake are associated with an increase in butyrate-producing 

taxa like Roseburia faecis, Ruminococcus bromii and Oscillospira (Flavonifractor) plautii. 
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1. Introduction 

The gut microbiota status has a direct impact on health and disease of the host [1]. Dietary habits 

are considered one of the strongest modulators of the gut microbiota. Serious conditions can show-

up due to sedentarism and bad dietary habits: hypertrophied adipocytes release inflammatory 

molecules (i.e., interleukins and tumour necrosis factor) which over enough time can favour the 

development of several inflammation-related disorders such as metabolic syndrome, cardiovascular 

disease, colorectal cancer, neurodegenerative diseases [2,3] and autoimmune disorders like Crohn’s 

disease, ulcerative colitis and allergies [4]. In this context, the Mediterranean diet (MD) is recognized 

as one of the healthiest diets worldwide. Therefore, we would expect a modulation of the gut 

microbiota as one of the positive health effects of the MD [5]. The main objective of the present work 

relays on the bacteria that are more closely associated with a high adherence to the MD. 
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2. Material and Methods 

2.1. Subjects 

This cross-sectional study enrolled 360 Spanish adults (251 females and 109 males) ranged 45.0 

± 10.5 years old. Major exclusion criteria included a history of diabetes mellitus, cardiovascular 

disease and hypertension, pregnant or lactating women, and current use of lipid-lowering drugs. 

2.2. Anthropometric and Biochemical Measurements 

The volunteers were classified as normal weight when BMI: 18.5–24.9 kg/m2 (n = 64), overweight 

when BMI: 25.0–29.9 kg/m2 (n = 115), and obesity when BMI > 30.0 kg/m2 (n = 181). Blood biochemistry 

(glucose, total cholesterol (TC), high-density lipoprotein cholesterol (HDL), and triglycerides) was 

analysed. Insulin resistance índex (HOMA-IR) was calculated. 

2.3. Dietary Estimation 

Habitual dietary intake at baseline was collected with a validated food frequency questionnaire 

[6]. A 14-item questionnaire, PREDIMED validated test, was also used in this study adherence of 

participants to the MD [7]. 

2.4. Faecal Sample Collection and DNA Extraction 

2.4.1. Metagenomic Data: Library Preparation 

Metagenomics studies were performed by analysing the variable regions V3–V4 of the 

prokaryotic 16S ribosomal RNA gene (16S rRNA), which gives 460 bp amplicons in a two rounds 

PCR protocol. Finally, paired-end sequencing was performed in a MiSeq platform (Illumina). 

2.4.2. Metagenomics Data: Analysis and Processing 

16S rRNA sequences obtained were filtered following quality criteria of the OTU (Operational 

Taxonomic Units) processing pipeline LotuS (release 1.58) [8]. Taxonomy was assigned using HITdb 

achieving up to species-level sensitivity. BLAST was used when HITdb failed to reach an homology 

higher than 97% [9,10]. Global normalization was performed using the library size as a correcting 

factor and log2 data transformation [11]. 

2.5. Statistical Analysis 

Microbiome Analyst tool [12] was used for statistical differences in microbiota profiles between 

groups (tertiles) through Zero-inflated Gaussian approach of MetagenomeSeq and using the 

cumulative sum scaling (CSS) normalization. 

3. Results 

Microbiota Composition: MD Adherence 

MD tertiles 1 and 3 have been compared through metagenomeSeq analysis. Significant 

differences appeared when comparing both tertiles (FDR < 0.05). Species shown in Figure 1 are 

strongly influenced by the MD-score. Subjects with a higher adherence to the MD are represented in 

the 3rd tertile while those who are far from the MD model are in the 1st tertile. This work focus on 

the high adherence species and their distribution, with box plots (Figure 2). All box plots represent 

those species with significant differences between high and low adherence tertiles. 
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Figure 1. Bacterial species with a significant relation with adnerence to the MD (FDR < 0.05) by 

metagenomeSeq test. 

 

 

Table 2: Bacterial species with a significant relation with adherence to the MD (FDR < 0,05) by metagenomeSeq test. 

High adherence (3rd tertile) Low adherence (1st tertile) 

Species FDR Species FDR 

Bifidobacterium animalis 1.21E-07 
OTU100|NN=Eubacterium saphenum 

GU427005|D=91 
4.44E-05 

Bacteroides cellulosilyticus 4.47E-07 
OTU375|NN=Succinivibrio dextrinosolvens 

Y17600|D=97 
0.0001 

OTU946|NN=Paraprevotella clara AB331896|D=86.8 1.72E-05 
OTU759|NN=Gordonibacter pamelaeae 

AB566419|D=87.6 
0.0005 

OTU1682|NN=Oscillibacter valericigenes 

AB238598|D=91.1 
3.42E-05 

OTU11|NN=Butyricicoccus pullicaecorum 

EU410376|D=89.5 
0.0002 

OTU1065|NN=Oscillospira (Flavonifractor) plautii 
Y18187|D=86.6 

3.42E-05 Christensenella minuta 0.0020 

OTU1173|NN=Roseburia faecis AY804149|D=94.9 0.0008 Parabacteroides goldsteinii 0.0073 

OTU1517|NN=Catabacter hongkongensis 

AB671763|D=87 
0.0008 

OTU1625|NN=Anaerotruncus colihominis 
DQ002932|D=89.9 

0.0120 

OTU1296|NN=Ruminococcus bromii DQ882649|D=92.3 0.0120 Alistipes timonensis 0.0155 

Erysipelatoclostridium ramosum 0.0176 Prevotella corporis 0.0192 

OTU521|NN=Papillibacter cinnamivorans 

AF167711|D=89 
0.0463   
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Bifidobacterium animalis 
OTU1682|NN=Oscillibacter 

valericigenes 

OTU1065|NN=Oscillospira 

(Flavonifractor) plautii 
OTU1173|NN=Roseburia faecis 

    

OTU1296|NN=Ruminococcus bromii Erysipelatoclostridium ramosum 
OTU521|NN=Papillibacter 

cinnamivorans 
Bacteroides cellulosilyticus 

  
OTU946|NN=Paraprevotella clara OTU1517|NN=Catabacter hongkongensis 

Figure 2. Bacterial species that were significantly more abundant in the group with high adherence to MD (FDR < 0.05) by metagenomeSeq test. Red boxes represent 

subjects with a higher adherence to the MD and blue boxes low adherence. 
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4. Discussion 

The gut microbiota co-develops with the host, and its bacterial proportions are modified by the 

action of the diet and other extrinsic stressors [13]. 

MD High Adherence Species 

High MD adherence has many beneficial outputs to human health. It is a great resource to 

manage obesity-related comorbidities, such as cardiovascular diseases, type 2 diabetes and pro-

inflammatory conditions [14–16]. Table 2 shows those species that are more associated with the 

adherence to MD. 

Bifidobacterium animalis belongs to the pylum Bacteroides, associated with obesity-related 

alterations in bacterial gut microbiota and the genus Bifidobacterium might have a critical role in 

weight regulation [17]. B. animalis subsp. lactis GCL2508 is a probiotic strain with an anti-metabolic 

syndrome effect [18], capable of proliferating and producing SCFA in the gut. These compounds have 

a regulatory effect on inflammatory conditions [19]. Bacteroides cellulosilyticus degrade cellulose [20], 

with an unprecedent number of carbohydrate active enzymes providing a versatile carbohydrate 

utilization [21]. Paraprevotella clara, a common member of the human intestinal microbiota [22], is 

closely related to carbohydrate-active enzymes known to degrade insoluble fibre [23]. Indeed, P. clara 

is known to produce acetic acid [22]. Oscillibacter valericigenes produces valeric acid, a SCFA [24]. 

Valeric acid has been reported to have an inhibitory effect on histone deacetylase (HDAC) isoforms 

implicated in a variety of pathologies such as cancer, colitis, and cardiovascular and 

neurodegenerative diseases [25]. High levels of Oscillospira (Flavonifractor) plautii have been strongly 

correlated with a high production of SCFA, especially propionate and butyrate [26]. This species 

correlate with a lean host phenotype [27]. Furthermore, Oscillospira genus has been correlated with 

the production of secondary bile acids known to prevent Clostridium difficile-associated infectious 

disease in humans [28]. Roseburia faecis is a butyrate producer whose abundance has been directly 

related with weight loss and a reduced glucose intolerance in mice [29]. Catabacter hongkongensis, 

regular in the human intestinal microbiota [30] Ruminococcus bromii has been related with diets rich 

in fibres and resistant starch, and greatly contributes to butyrate production in the colon [31]. 

It is important to highlight some beneficial effects of butyric acid as it has been reported to 

improve the intestinal barrier integrity [32], regulate cell apoptosis [33], stimulate production of 

anaerobic hormones [34] and, by inducing differentiation of colonic regulatory T cells, suppress 

inflammatory and allergic responses [35]. On the other hand, many conditions have been associated 

with low levels of butyrate, such as colon cancer or obesity [31]; so increased butyrate production in 

colon may be beneficial to human health. 

Erysipelatoclostridium ramosum is a member of the Erysipelotrichaceae family known to interfere 

in various ways with the enterohepatic circulation and excretion of bilirubin, transforming it into 

urobilin [36]. Papillibacter cinnamivorans is not well known but has been found in lower amount in 

centenaries than in any other age [37]. 

5. Conclusions 

Our results indicate that the well-known beneficial factors of the MD may be triggered by 

changes in intestinal microbiota due to diet habits. A high adherence to MD seems to increase the 

abundance of some species associated with health: Bifidobacterium animalis, Oscillibacter valericigenes, 

Oscillospira (Flavonifractor) plautii, Roseburia faecis, Ruminococcus bromii, Butyricicoccus pullicaecorum 

and Papillibacter cinnamivorans. This study strongly suggests that MD increase butyrate production 

from R. faecis, R. Bromi and Oscillospira (Flavonifractor) plautii. Erysipelatoclostridium ramosum is the 

only bacteria from this study that does not show a clear beneficial effect on health, although this 

identification should be taken with caution. A deeper taxonomy is required to put some light into it. 
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