Assessment of negative factors affecting the intestinal microbiota in people with excessive body mass compared to people with normal body mass

Karolina Osowiecka¹, Natalia Pokorna², Damian Skrypnik³

¹ Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Warsaw, Poland

² Institute of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Poznan, Poland

³ Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznan, Poland

INTRODUCTIONS

- Intestinal microbiota plays a significant role in the human body;
- It is estimated that the number of microorganisms in the digestive tract is over 10¹⁴ CFU (colony forming units), forming a microbiota;
- A range of negative factors may promote dysbiosis, which leads to many diseases and metabolic disorders

THE AIM OF THE STUDY AND HYPOTESIS

- The aim of the study is to assess how often factors negatively influencing intestinal microbiota occure in people with excessive body mass compared to people with normal body mass.
- Hypotesis: People with BMI (Body Mass Index) ≥25 kg/m² present more factors leading to dysbiosis and dysbiosis-related health problems compared to people with normal BMI.

MATERIALS AND METHODS

- The study involved volunteers aged 18 65 years:
 - 582 people with normal BMI 18.5 24.99 kg/m² "E-BMI" group
 - 538 people with BMI $\geq 25 \text{ kg/m}^2$ "N-BMI" group ;
- The study was conducted with the use of the authors' survey using the Computer-Assisted Web Interviewing method;
- The surveys were collected between February and June 2020;
- The questionnaire included questions on sociodemographic characteristics, level of physical activity, frequency of smoking, and stress. Also the frequency of use of NSAIDs (non-steroidal anti-inflammatory drugs) and PPIs (proton pomp inhibitors) was examined;
- Statistica for Windows 10.0 software (StatSoft, Kraków, Poland) was used to analyze the results. For statistics the Fisher test was implemented. P-value <0.05 was considered significant.

RESULTS

Characteristics of group (n=1120)

Characteristics of group	E-BMI (n=538) (%)	N-BMI (n=582) (%)		
	Gender			
Female	474 (88.1)	553 (95)		
Male	64 (11.9)	29 (5)		
	Age (years)			
18-24	50 (9.3)	101 (17.4)		
25-34	218 (40.5)	279 (47.9)		
35-44	169 (31.4)	149 (25.6)		
45-54	72 (13.4)	36 (6.2)		
55-65	29 (5.4)	17 (2.9)		

Characteristics of group (n=1120)

Characteristics of group	E-BMI (n=538) (%)	N-BMI (n=582) (%)
	Education level	
Primary	5 (0.9)	7 (1.2)
Lower secondary	24 (4.5)	18 (3.1)
Upper secondary	136 (25.3)	114 (19.6)
Student	45 (8.4)	71 (12.2)
Higher	308 (57.2)	348 (59.8)
PhD Student	4 (0.7)	5 (0.9)
PhD or higher	16 (3)	19 (3.2)
	Economic status	
Very bad	8 (1.5)	3 (0.5)
Bad	13 (2.4)	20 (3.4)
Moderate	253 (47)	232 (39.9)
Good	214 (39.8)	282 (48.5)
Very good	50 (9.3)	45 (7.7)

Level of physical activity (n=1120)

Level of physical activity	E-BMI (N=538)		N-BMI	N-BMI (N=582)		
-	Ν	%	Ν	%	_	
Sedentary	239	44.4	177	30.4		
Moderate	273	50.8	345	59.3	χ2=29.39; p<0.0001	
High	26	4.8	60	10.3		

The frequency of smoking cigarettes (n=1120)

The frequency of smoking cigarettes	E-BMI (N=538)		N-BMI	p-value	
	Ν	%	Ν	%	
Do not smoking	324	60.2	393	67.6	
Has smoked in the past	92	17.1	81	13.9	
<5 cigarettes a day	30	5.6	28	4.8	χ2=10.31; p=0.0356
5-20 cigarettes a day	83	15.4	78	13.4	
> 20 cigarettes a day	9	1.7	2	0.3	

The frequency of alcohol consumption (n=1120)

The frequency of alcohol consumption	E-BMI (N=538)		N-BMI	p-value	
	Ν	%	Ν	%	
No	184	34.2	220	37.8	
Less often than once a week	213	39.6	237	40.7	
1-2 times a week	106	19.7	94	16.2	χ2=3.73; p=0.4440
3-4 times a week	27	5	24	4.1	
5 times a week or more	8	1.5	7	1.2	

The frequency of stress (n=1120)

	E-BMI	(N=538)	N-BMI	(N=582)	
The frequency of stress					p-value
	Ν	%	Ν	%	
No	22	4.1	24	4.1	
Less often than once a week	104	19.3	137	23.5	
1-2 times a week	148	27.5	174	29.9	χ2=5.66; p=0.2259
3-4 times a week	130	24.2	118	20.3	
5 times a week or more	134	24.9	129	22.2	

Diagnosis of the disease (n=1120)

Diagnosis of the disease other than excessive body mass	E-BMI	(N=538)	N-BMI	(N=582)	p-value
	Ν	%	Ν	%	
Not diagnosed	350	60.1	289	49.7	n=0 0004
Diagnosed	232	39.9	293	50.3	P-0.0004

NSAID drugs (n=1120)

NSAIDs intake	E-BMI	E-BMI (N=538)		(N=582)	p-value
	N	%	Ν	%	
No	82	15.2	101	17.4	- 0 2727
Yes	456	84.8	481	82.6	p=0.3737

Frequency of taking NSAIDs (n=1120)

Frequency of NSAIDs intake	E-BMI (N=538)		N-BMI (N=582)		p-value
	Ν	%	Ν	%	_
Do not take	82	15.2	101	17.4	
Once a month or less	194	36.1	223	38.1	
Few times a month	171	31.9	175	30.1	
Once a week	25	4.6	26	4.5	χ2=7.74; p=0.2580
Few times a week	43	8	33	5.7	
Once a day	18	3.3	12	2.1	
More than once a day	5	0.9	12	2.1	

PPI drugs (n=1120)

PPIs intake	E-BMI (N=538)		N-BMI	(N=582)	p-value
	N	%	N	%	
No	398	74	472	81.1	n-0.0050
Yes	140	26	110	18.9	p=0.0050

Frequency of taking PPIs (n=1120)

Frequency of PPIs intake	E-BMI (N=538)		N-BMI (N=582)		p-value
	Ν	%	Ν	%	
Do not take	398	74	472	81.1	
Once a month or less	40	7.4	32	5.5	
Few times a month	27	5	21	3.6	-2-12 (()
Once a week	4	0.7	2	0.3	$\chi^2 = 13.66;$ p=0.0337
Few times a week	12	2.2	11	1.9	
Once a day	53	10	34	5.9	
More than once a day	4	0.7	10	1.7	

CONLUSIONS

• People with BMI ≥25 kg/m² present more factors which may result in dysbiosis and lead to dysbiosis-related health problems compared to people with normal BMI.

CLINICAL INPLICATIONS

• To prevent the negative health effects resulting from dysbiosis, patients should be educated in the range of proper diet, physical activity and lifestyle.

REFERENCES

- Thursby, E.; Juge, N. Introduction to the human gut microbiota. *Biochem J* 2017, 474(11), 1823-1836.
- 2. DeGruttola, A.K.; Low, D.; Mizoguchi, A.; Mizoguchi, E. Current Understanding of Dysbiosis in Disease in Human and Animal Models. *Inflamm Bowel Dis* **2016**, 22(5), 1137-1150.
- 3. Kosnicki, K.L.; Penprase, J.C.; Cintora, P.; Torres, P.J.; Harris, G.L.; Brasser, S.M.; Kelley, S.T. Effects of moderate, voluntary ethanol consumption on the rat and human gut microbiome. *Addict Biol* **2019**, 24(4), 617-630.
- 4. Karl, J.P.; Hatch, A.M.; Arcidiacono, S.M.; Pearce, S.C.; Pantoja-Feliciano, I.G.; Doherty, L.A.; Soares, J.W. Effects of Psychological, Environmental and Physical Stressors on the Gut Microbiota. *Front Microbiol* **2018**, 9, 2013.
- Bressa, C.; Bailén-Andrino, M.; Pérez-Santiago, J.; González-Soltero, R.; Pérez, M.; Montalvo-Lominchar, M.G.; Maté-Muñoz, J.L.; Domínguez, R.; Moreno, D.; Larrosa, M. Differences in gut microbiota profile between women with active lifestyle and sedentary women. *PLoS One* 2017, 12(2), e0171352.
- Lee, S.H.; Yun, Y.; Kim, S.J.; Lee, E.J.; Chang, Y.; Ryu, S.; Shin, H.; Kim, H.L.; Kim, H.N.; Lee J.H. Association between Cigarette Smoking Status and Composition of Gut Microbiota: Population-Based Cross-Sectional Study. J Clin Med 2018, 7(9), 282.
- Słaby, D.; Szewczyk, S.; Beberok, A.; Wrzesniok, D. The role of protective agents in pharmacotherapy assessment of patients awareness [Rola preparatów osłonowych w farmakoterapii ocena świadomości pacjentów]. *Farm Pol* 2019, 75(11), 591-598.
- Imhann, F.; Bonder, M.J.; Vich Vila, A.; Fu, J.; Mujagic, Z.; Vork, L.; Tigchelaar, E.F.; Jankipersadsing, S.A.; Cenit, M.C.; Harmsen, H.J.; Dijkstra, G.; Franke, L.; Xavier, R.J.; Jonkers, D.; Wijmenga, C.; Weersma, R.K.; Zhernakova, A. Proton pump inhibitors affect the gut microbiome. *Gut* 2016, 65(5), 740-748.
- 9. Database on Body Mass Index, http://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi (accessed on 16 October 2020).

ACKNOWLEDGMENTS

Thank You for Your attention!

Assessment of negative factors affecting the intestinal microbiota in people with excessive body mass compared to people with normal body mass

Karolina Osowiecka¹, Natalia Pokorna², Damian Skrypnik³

¹ Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Warsaw, Poland

² Institute of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Poznan, Poland

³ Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznan, Poland