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Abstract: Liquid biopsies are becoming an increasingly important potential replacement for existing 

biopsy procedures which can be invasive, painful, and compromised by tumour heterogeneity. This 

paper reports a simple electrochemical approach tailored towards a point of care cancer detection 

and treatment monitoring from biofluids using a label-free detection strategy. The mutations under 

test were the KRAS G12D and G13D mutations which are both important in the development and 

progression of many human cancers and whose presence correlates with poor outcomes. These 

common circulating tumour markers were investigated in clinical samples and amplified by 

standard and specialist PCR methodologies for subsequent electrochemical detection. Following 

pre-treatment of the sensor to give a clean surface, DNA probes developed specifically for detection 

of the KRAS G12D and G13D mutations were immobilized onto low-cost carbon electrodes using 

diazonium chemistry and EDC/NHS coupling. Following the functionalisation of the sensor, it was 

possible to sensitively and specifically detect mutant KRAS G13D PCR product against a 

background of wild type KRAS DNA from the representative cancer sample. Our findings give rise 

to the basis of a simple and very low-cost system for measuring ctDNA biomarkers in patient 

samples. The current time to result of the system is 4.5 h with considerable scope for optimisation 

and already compares favourably to the UK National Health Service biopsy service where patients 

can wait weeks for their result. The paper will report the technical developments we have made in 

the production of consistent carbon surfaces for functionalisation, assay performance data for KRAS 

G13D, detection of PCR amplicons under ambient conditions. 
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1. Introduction 

Cancer is a genetic disease by nature, caused by mutations in certain genes thereby resulting in 

cellular malfunction [1]. Imaging tests can sometimes be inconclusive and generally do not provide 

information on the stage or type of cancer, so further biopsy will be needed [2]. Collecting multiple 

biopsies from different regions of a primary tumour and associated metastasis is invasive and may 

pose serious medical risks [3]. The time point at which a tumour manifests clinical symptoms often 

correlates with the later stages of progression (e.g., Phases III & IV) where surgery and therapy are 

less effective because of e.g., metastasis or tumour cells acquiring a critical mass of mutations [4]. 
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Furthermore, for some patients, surgical biopsy procedures are not possible therefore liquid biopsies 

that detect the presence of tumour DNA in blood, hold promise as a non-invasive alternative. 

Short fragments of cell-free DNA (cfDNA) are detectable in most body fluids including blood. 

In cancer patients, a fraction of cfDNA called circulating tumour DNA (ctDNA) can be found, which 

originates from tumours and may carry the same mutations and genetic alterations as those present 

in the primary tumour [5]. Although circulating tumour cells (CTCs) that have been shed into the 

vasculature of a primary tumour are carried around the body in circulation, they are present at levels 

of around 10 cells/mL of blood, indicating that only very low concentrations are present in clinical 

samples. Compared to ctDNA, CTCs are rare in peripheral blood and are difficult to separate from 

other cells adding further credibility to the use of ctDNA for liquid biopsy applications. Although the 

mechanism of ctDNA release from tumour cells is poorly understood [6], it is thought to be released 

in small quantities following apoptosis or necrosis. ctDNA usually comprises 0.01–1% of the 

circulating free DNA in blood [7] and it is important to note that this can be shed as both single 

stranded and double stranded DNA [8]. ctDNA can currently be detected in blood and other body 

fluids like lymph, urine and stool [9]. Due to the small fraction of ctDNA masked in by large 

background levels of wildtype cell-free DNA, highly sensitive amplification reactions such as 

polymerase chain reaction (PCR) will need to be employed to achieve discrimination. It is possible 

that a PoC measurement of circulating tumour DNA (ctDNA) may present a more practical means of 

detecting the presence of a tumour as well as capturing tumour heterogeneity, evaluating response 

to treatment and monitoring disease recurrence [9,10]. 

V-Ki-ras Kirsten rat sarcoma (KRAS) is a member of the RAS family of proteins which are a part 

of at least six signalling pathways in a healthy human. KRAS is the most frequently mutated protein 

in human tumours with KRAS G12D and G13D being specific variants found across many tumour 

types including pancreatic, colorectal, non-small cell lung, and ovarian cancer [11]. KRAS activated 

mutations drive cancer initiation, progression, and drug resistance, directly leading to nearly a 

million deaths per year. KRAS mutations take place in approximately 90% of pancreatic cancers [12], 

30% of lung cancers [13], 60% of thyroid cancers, and 43% of colorectal cancers [14]. The topic of 

liquid biopsies is one such area where innovations in biomarker detection will enhance clinical 

outcomes for patients [15]. 

Electrochemical DNA biosensors represent an exciting approach to the fast, low-cost detection 

of clinically important biomarkers [16,17] at the point of care [18]. Electrochemical biosensors are 

used to directly convert a biological binding event to an electronic signal [19]. A range of electrode 

materials and electrochemical measurement approaches have been employed for sensitive 

measurements (cyclic voltammetry [20], differential pulse voltammetry [21], square wave 

voltammetry [22], and electrochemical impedance spectroscopy [23]). The potential of 

electrochemical biosensors, once matured as a technology to provide efficient clinical workflows is 

immense. In DNA biosensing, a change in signal is obtained when recognition and hybridisation of 

two opposing strands of DNA occur as a result of their base-pair complementarity. A double stranded 

DNA sequence with tumour-specific mutations can indicate the diagnosis of a specific cancer [24]. 

As the concentration of ctDNA increases when patients have advanced cancers, achieving high 

sensitivity for the DNA sensor is important for the early detection of disease, and developing tailored 

therapies. Carbon electrodes are chemically inert, particularly at negative potential ranges in all 

media making them highly suitable electrode sensors for electroanalytical chemistry and giving them 

an advantage over metal electrodes[25]. Screen Printed Carbon electrodes (SPCEs) are homogenous, 

simple, sensitive, cost-effective (~£2 each) and disposable making them preferable for rapid 

electrochemical analyses and suitable as electrodes for characterizing the processes we employed, 

which were Cyclic Voltammetry (CV) and Differential Pulse Voltammetry, two routinely used 

electrochemical measurement techniques. 

CV and DPV are common analytical techniques that supply information on electron transfer 

reaction kinetics of any combined chemical reaction [26]. In both techniques, a potential waveform is 

applied to the working electrode (WE). The peak current obtained is directly influenced by 

hybridisation between target and immobilised probe DNA strands [27]. Both DPV and CV are useful 
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for studying electro-activity and characterising the reductive and oxidative properties of compounds 

in solution. This work presents a KRAS G12D and G13D DNA oligonucleotide probe modified sensor 

array that can accurately detect mutant KRAS amplicons and therefore forms the basis of a system 

for the accurate detection of ctDNA in patient samples and monitoring of response during treatment. 

This was achieved by amplifying mutant DNA isolated from a human cancer cell lines recovered 

from clinical samples, using electrochemical techniques and SPCEs to detect a clinically relevant 

mutation, comparing the signal change from DNA hybridisation experiments involving wildtype 

KRAS and amplified KRAS mutant samples, varying concentration of amplified products to 

determine concentration effects and establishing a limit of detection for the DNA amplification 

reaction. In this study, both DPV and CV were used depending on whether electrodes needed to be 

cleaned, electrografted, or characterised during sensor measurement. Different voltage and scan 

ranges were selected for the measurements carried out. Due to the simplicity of the approach 

presented herein and the choice of steps employed in the assay, the system can be very easily 

automated and integrated into a final device capable of fast and seamless clinical measurements. 

2. Materials and Methods 

2.1. Reagents 

Droplet digital PCR (ddPCR) assays, Supermix for probes, DG8TM cartridges and Droplet 

Generation Oil were obtained from BioRad Laboratories Ltd., UK. Deionized water, sodium chloride, 

phosphate buffered saline (PBS), sodium nitrate, 4-aminobenzoic acid, hydrochloric acid, 

ethanolamine, 2-(N- morpholino) ethanesulfonic acid (MES), 1-Ethyl-3-(3-dimethylaminopropyl) 

carbodiimide hydrochloride (EDC), N-hydroxysuccinimide (NHS), potassium ferricyanide, 

potassium chloride, and potassium ferrocyanide were all purchased from Sigma-Aldrich, UK. 250 

units HotStarTaq Plus and dNTP Mix, PCR Grade (200 μL) were purchased from Qiagen, UK. 

Phusion direct PCR kit was purchased from Thermo Scientific. 

2.2. Electrochemical Setup 

Screen printed multi carbon electrodes (DRP 8W110) as shown in Figure 1A below was obtained 

from DropSens (Oviedo, Spain) with chip dimensions of 50 × 27 × 1 mm (L × W × D). The chip 

contained eight carbon working electrodes with diameters of 2.95 mm with a carbon counter and 

silver reference electrode. The screen-printed fabrication process is specified by the manufacturers 

(Dropsens, 2019). 

 

Figure 1. (A) Image of screen printed electrode array employed (8 × working electrodes with common 

Ag reference and carbon counter electrodes along with schematic showing DNA functionalisation 

and DNA target binding (B) DPV results showing repeated cycling of the 8 working electrodes prior 

to modification and DNA introduction using the same current and voltage inputs. 
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2.3. Electrochemical Measurements and Surface Functionalisation 

DNA hybridisation experiments were performed using a covalently attached layer of single 

stranded DNA probes. The surface functionalisation protocol is illustrated in Figure 1A. To prepare 

the surface of the carbon electrodes for DNA probe attachment it was necessary to first use a surface 

pretreatment by applying 1.4 V for 1 min in 0.5 M acetate buffer solution (ABS) containing 20 mM 

NaCl 8 (pH 4.8) via CV. Next, 2 mM NaNO2 solution with 2 mM 4-aminobenzoic acid was prepared 

in 0.5 M HCl. and stirred for about 5 min at room temperature to produce a diazonium compound. 

The activated diazonium solution was then scanned using CV from +0.4 to −0.6 V at a scan rate of 100 

mV/s followed by a wash with DI water. The resulting 4-carboxyphenyl (AP) film was activated on 

the electrode surface with 100 mM EDC and 20 mM NHS in 100 mM MES buffer (pH 5.0) for 60 min 

to form an ester that allowed for efficient conjugation to the amine-modified ssDNA probe. 

Ferricyanide buffer (5 µM) was used to characterise the sensor surface. Unless specifically stated, all 

the reported steps and measurements were carried out at room temperature. 

2.4. Genomic DNA Sample Preparation, DNA Probe Design and Sample Amplification 

For assay development, copies of the KRAS pG13D mutant and wild type DNA were amplified 

from genomic DNA (gDNA) isolated from SK-UT-1 cells. Levels of both mutant and wild type DNA 

were determined using ddPCR assays (KRAS WT for p.G13D c.35G>A, assay ID dHsaCP2000002) in 

combination with a QX200TM Droplet DigitalTM PCR system (Biorad Laboratories Ltd., UK) 

following the manufacturer’s instructions. Briefly, 5-10ng of gDNA isolated from SK-UT-1 cells- was 

mixed with ddPCR Supermix for probes (N0 dUTP) and florescein amidite (FAM)-labelled KRAS 

p.G13D primers/probe and hexachloro-fluorescein 9 (HEX)-labelled KRAS WT primers/probes, in the 

presence of restriction enzyme and in a volume of 20 μL. Reaction samples were loaded onto a 

DG8TM cartridge with 70 μL of Droplet Generation Oil for Probes according to the Droplet Generator 

Instruction Manual (Biorad Laboratories Ltd., UK). PCR cycling conditions for the generated droplets 

were as follows: initial enzyme activation at 95 °C for 10 min, followed by 40 cycles of denaturation 

at 94 °C for 30 s, and annealing/extension at 55 °C for 1 min, after which ended with a final enzyme 

deactivation at 98 °C for 10 min. Data acquisition after thermal cycling was performed using the 

QX200 Droplet Reader and the QuantaSoft Software (Biorad Laboratories Ltd.). 

The design of PCR primers and probes used in this study was based on the published sequence 

of KRAS pG12D and pG13D under accession number NC_000012.12 (NCBI, 2019). Amine-modified 

synthetic oligonucleotides (KRAS G13D) designed as shown in Table 1 below with a concentration of 

200 μM was obtained from Sigma-Aldrich, UK, and stored at −80 °C prior to aliquoting for use as 

probes. A wild type probe (without the single base mutation) was also designed for use as a negative 

control. DNA probe stocks were diluted to a concentration of 2 μM in 0.1 × PBS prior to 

immobilisation. Primer-BLAST software was used to design the PCR primers employed in this study. 

The forward primers had a GC content of 55% while the reverse primer had a GC content of 39.13% 

with an estimated product length of 88 with low self-complementarity. 

Table 1. List of DNA sequences employed in this study. 

KRAS G13D Probe and Primer Sequences 

23 bases Wild type hybridisation Probe TGGAGCTGGTGGCGTAGGCAAGA 

23 bases Mutant hybridisation Probe TGGAGCTGGTGACGTAGGCAAGA 

Forward Primer (Wild type) TGTGGTAGTTGGAGCTGGTG 

Forward Primer (Mutant) TGTGGTAGTTGGAGCTGATG 

PCR Probe (Mutant) TCTTGCCTACGCCACCAGCTCCA 

Reverse Primer TTGTGGACGAATATGATCCAACA 

For PCR amplification, samples of extracted wild type and KRAS G13D mutated DNA was 

amplified using the phusion direct PCR kit following the protocol and reaction setup guide outlined 

by Thermo Scientific, UK. Phusion blood II DNA polymerase (1 µL), 2x PCR Buffer (25 µL), 50 mM 
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EDTA (2.5 µL), 50 mM MgCl2 solution (1.5 µL), and 100% DMSO (2.5 µL) were all included in the 

reaction mix and dispensed into appropriate PCR tubes. 1 μL Template DNA, 5 uL forward and 

reverse primers, and 10 uL ultrapure water was added to the master PCR tube containing the reaction 

mix and the thermal cycler was programmed to start with an initial heat-activation step at 98 °C for 

300 s. Temperatures specifications for denaturing, annealing, and extending were set at 90 s for 94 

°C, 65 °C, and 72 °C respectively. A final extension for 60 s at 72 °C was set and PCR conditions were 

set for 37 cycles. PCR amplification of wild type and KRAS G13D samples was performed using the 

minipcr thermal cycler [28] and amplicons concentrations were confirmed using the Qubit 4 

fluorometer and dsDNA broad range quantification assay [1]. 
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3. Results and Discussion 

3.1. Assay Workflow and Development 

The use of a SPCE with multiple working electrodes allows each electrode to be individually 

modified whilst rapidly carrying out simultaneous measurement of peak currents and charge transfer 

resistance. The electrode functionalisation process is summarised in Figure 1A. Electrografting using 

in-situ generated diazonium cations is important for modifying the surface of the SPCE by allowing 

the formation of covalent bonds between the carbon surface and organic films. EDC is an established 

zero-length cross-linking agent that has been employed in coupling carboxyl groups to primary 

amines in varied applications [29]. One of the main benefits of EDC coupling is its water solubility 

that allows direct bioconjugation without prior organic solvent dissolution. To increase the stability 

of the active ester, NHS was introduced to modify the amine-reactive chemical substance by 

converting it to an active NHS ester, thus maximising the efficiency of the EDC-mediated coupling 

reactions. The reproducibility of this hybridisation sensor was explored by simultaneously analysing 

all 8 Wes from the multielectrode after the surface modification steps. Figure 1B shows a high level 

of consistency in the peak height, potential, and width. The multiplexed analysis we employed 

greatly reduced analysis time because of high throughput of samples and minimized reagent 

consumption. After introducing the probe solution to the surface of the modified electrodes, the 

remaining active groups on the electrode were blocked using ethanolamine to produce a consistent 

sensing layer in order to enable DNA specificity and stability in terms of the DNA binding response. 

3.2. DNA Sensor Hybridisation Specificity 

Having achieved a consistent behaviour of modified electrodes on the same chip, the next step 

was to test the assay’s response to incubation in a representative KRAS sample using the designed 

probes. We explored the ability of the probe modified electrodes to discriminate between G13D 

mutant and wild type KRAS sequences in representative clinical samples. To investigate specificity 

levels and gain an initial impression of assay sensitivity, a series of electrodes were functionalised 

with KRAS G13D mutant and wild type probe sequences. The results of these experiments are 

summarised in Figure 2, which shows the percentage change in the DPV peak current following 

target hybridisation. For macroscale electrodes functionalised with biological molecules such as DNA 

or antibodies the expectation is that differential pulse voltammetric peak currents will reduce upon 

target hybridisation. It has been observed that these effects can be reversed when micro or nanoscale 

electrodes are employed [17,30], but for this study, the electrodes employed were comfortably on the 

macro scale (diameter = 2.95 mm). Therefore, we would expect a reduction in peak current when 

specific DNA hybridisation had taken place and this was found to be the case for lower 

concentrations of DNA (pico to low nanomolar concentrations). For nanomolar (>10 nM)and 

micromolar concentrations, an increase in the peak current following hybridisation was consistently 

observed (and has also been observed in other unpublished data from our lab involving SPCEs) for 

carbon electrodes which is likely explained by the high surface density of hybridised DNA amplicons 

changing the interfacial properties of the electrode and therefore altering the electrochemical 

response. The underlying physical mechanism of this effect is actively under investigation. Figure 2A 

shows that when mutant and wild type oligonucleotide probe sequences functionalised SPCEs were 

incubated in a representative sample containing the G13D mutation, there was hybridisation in both 

cases, the signal change was greater for the wildtype probe because of the high background of 

wildtype DNA and the comparatively low fraction of mutated KRAS G13D present in the 

representative clinical sample. Similar behaviour was observed for KRAS G12D probe functionalised 

electrodes for a representative sample for that particular mutation, showing the wild type KRAS 

DNA hybridised strongly to the nucleic acid modified carbon surfaces. As a result of these findings 

and the inability to electrochemically discriminate between positive and negative samples owing to 

the strong influence of background DNA in the sample, DNA amplification strategies were 
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developed and tested in order to ensure the production of unequivocal detection of ctDNA 

mutations. 

 

Figure 2. (A) DPV percentage signal change in response to mutant and wild type probes hybridized 

with genomic KRAS G13D ssDNA. (B,C) Electrochemical signal change in response to incubated 

KRAS G12D ssDNA hybridised with mutant and WT oligonucleotides respectively. 

3.3. KRAS G13D Amplification 

Primers used for the PCR amplification were tailored to selectively amplify the mutant target 

from a pool of mutant and wild type sequences in a sample by varying the single nucleotide 

responsible for the mutation in the primer sequence. Adopting this approach allowed us to effectively 

enrich the number of mutated DNA sequences in the sample without amplifying the wild type, in 

order to produce a signal change above the background signal generated by KRAS wild type DNA 

non-specifically associating with the oligonucleotide probe sequences for KRAS G13D. 

In selecting the approach reported here, ctDNA detection could potentially be coupled to a DNA 

amplification reaction because it allows the possibility of developing a multiplexed panel of DNA 

sequences on a single chip, meaning that commonly mutated genes could all be identified in parallel 

(e.g., KRAS, TP53, BRCA1&2, IDH-1 etc.). This approach of developing biomarker “panels” is 

thought to be one of the key advantages of the approach [31]. 

When the wild type probe sequence modified electrodes were hybridised with KRAS G13D 

amplicons, alterations in the peak current were not observed indicating no significant hybridisation. 

The mutant amplicons when incubated with mutant probe modified electrodes gave rise to a very 

significant signal change (~350%) indicating hybridisation with highly concentrated DNA samples 

(nano-micromolar concentration ranges) because of the strong positive signal change. Subsequent 

UV-vis measurements on the amplicon confirmed this to be the case with estimated amplicons 

concentrations being in the range of 250–500 µM. These findings were highly satisfying, i.e., that the 

surface tethered KRAS G13D mutant probe sequence could in fact discriminate between the mutant 

and wild type samples based on the presence or absence of PCR amplicons for KRAS G13D high 

sensitivity. This in fact represented a sort of double specificity for the PCR-based assay because the 

primer design had already been shown to specifically amplify the mutated sequence so coupling in 

the specificity of the electrochemical probe sequence meant that the assay would be able to 

successfully discriminate mutant amplicons from the sample. Having established the specificity of 
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the assay and the nature of the electrochemical change, the next step involved verifying the sensitivity 

of the assay and dose response effects for the KRAS G13D mutant PCR product. 

3.4. Concentration dose Response 

After establishing PCR primer specificity, ssDNA probe specificity and electrochemical signal 

changes of the correct direction and magnitude, it was important to investigate dose response effects. 

In these experiments, non-amplified and amplified samples were diluted and a dose response curve 

was constructed (see Figure 2A,B). For the unamplified sample, the lowest concentration (0.85 ng/µL) 

showed the lowest reduction in oxidative peak current post hybridisation with signal change 

increasing as sample concentration increased. The issue here, however, is the specificity of the probe-

target interaction (as shown earlier) and the relatively small signal change brought about by 

incubation with unamplified samples. Owing to the fact that these were relatively low concentrations 

of DNA, leading to limited hybridisation, the signal changes were negative in direction i.e., decreases 

in DPV peak current. On the other hand, the amplified sample produced a dose-response curve with 

higher signal changes which were positive in direction due to the specific enrichment of the mutant 

sequence concentration with smaller standard deviations because of the hybridisation of strands of 

similar lengths (the unamplified samples contains heterogenous strand lengths because it is 

unprocessed DNA) and in effect the full fraction of cfDNA from a patient. Achieving good sensitivity 

is very important as the concentration of circulating free DNA released by tumour cells is usually in 

proportion to the stage of cancer [32]. As circulating nucleic acids are present in blood at ng/mL levels, 

which based on the fragment length is analogous to a picomolar concentration, a minimum of 

femtomolar sensitivity will be beneficial for detection of tumour-specific sequences [15]. Many 

published biosensor studies achieve such sensitivity levels through the use of exotic electrode 

modifications, typically involving the production of electrodes modified with graphene, 

nanoparticles, carbon nanotubes etc. In our case, we have opted to keep the electrode substrate, low-

cost, and easy to produce and couple to a PCR reaction to achieve the desired sensitivity and 

specificity. Whilst our approach leads to a trade-off in terms of time to result, it ensures specific 

amplification and sensitive and specific hybridisation signals giving confidence in the result whilst 

achieving an overall time to result which is a significant improvement over the current clinical 

practice. The ctDNA concentration response shown in Figure 3 shows a clear dose response effect 

which predicts that an increase in ctDNA, per unit concentration, will result in larger electrochemical 

signal response in the positive direction (i.e., increasing DPV peak current). Since levels of ctDNA are 

strongly correlated with tumour stage and response to therapy [33,34], there is a clear potential for 

this system to be applied in measuring how a patient’s cancer treatment is progressing. 
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Figure 3. Successful amplification of KRAS G13D mutants further confirmed by a large percentage 

signal ratio between mutant probe and G13D mutant amplicons. 

 

Figure 4. ctDNA response at different concentrations using DPV peak currents. 

The findings of this study on ctDNA amplification are in agreement with several previous 

studies that were also able to successfully detect ctDNA KRAS mutations in patient samples using 

ddPCR technique [34–37]. Electrochemical detection will quickly and accurately screen for cancer so 

treatment can be initiated as quickly as possible. In addition, this study shows the electrochemical 

sensor can be directly coupled to a standard PCR reaction which employs standard primers and 

reagents and does not require optimisation, meaning that amplification reactions for other ctDNA 

markers can be developed off-chip and transferred directly into the assay to produce a ctDNA panel. 
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The current time to result for cancer detection in a clinical setting is 2–3 days (including sample 

transportation) for a non-complicated biopsy analysis and 7–10 days for a complicated biopsy 

analysis [38]. In the UK, National Health Service mutation typing following biopsy can take up to 9 

weeks [39]. In total, the DNA isolation from blood, clean up and PCR amplification took 

approximately 150 min. The ctDNA target incubation takes approximately 60 min while the CV and 

EIS pre and post hybridisation measurements for each electrode take less than 10 min. This gives a 

total of 3.5 h. However, through optimisation and device integration, we believe there is making 

considerable room for optimisation in terms of time to result. The current analysis time of 3.5 h is a 

big stride towards PoC provision for ctDNA profiling in the healthcare setting. This can be further 

optimised by isothermal amplification which can cut down the number of thermal cycles and in turn 

reduce the overall amplification time from 2 h to 1 h [40]. Near future work will explore the detection 

of other KRAS mutations and mutations in other genes involved in cancer e.g., P53 and BRCA1. 

Analyzing multiple mutations simultaneously in a given sample without prior knowledge of the 

alterations using multiplex techniques and direct detection of ctDNA from cancer patient samples 

will support the future direction of PoC clinical testing. 

5. Conclusions 

A simple DNA sensor requiring no labelling processes or external indicators was developed 

using a multi carbon electrode. We were able to design a PCR reaction capable of amplifying either 

mutant KRAS G13D or wild type KRAS through primer choice from representative patient samples. 

In parallel, an electrochemical detection scheme involving DNA hybridisation technique and screen- 

printed carbon electrodes were developed and shown through a series of comparative measurements 

to be sensitive and specific for the KRAS G13D mutation. Differential pulse voltammetry 

measurements provided the desired response and showed detection was possible from samples 

containing as few as 0.58 ng/µL amplicons. In addition, the response was found to be consistent with 

previously observed results, i.e., large signal decreases being evident upon amplification of the 

mutant allele, offering the promise of quantitation of mutant sequences from clinical samples. These 

results raise the prospect of simple, rapid, cost- effective measurement of nucleic acid tumour 

markers from blood and other body fluids. The current time to result of the electrochemical sensor 

lies at 4.5 h providing significant scope for optimisation. It is important to note that the sensor being 

developed can be potentially used for both early detection of cancer and monitoring the response to 

cancer treatment and thus increases the possibility of tailoring therapy and early diagnosis. 
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