PHOTOCROSS-LINKED BIO-BASED POLYMERS FOR POTENTIAL APPLICATION IN OPTICAL 3D PRINTING

M. Lebedevaite, J. Ostrauskaite

Department of Polymer Chemistry and Technology, Kaunas University of Technology, Lithuania

The Aim of the Research

The aim of this study was to evaluate the effect of acrylated epoxidized soybean oil-based resin composition on photocross-linking kinetics and mechanical properties of the resulted polymers.

Photocross-linking

Photosensitive resins were composed of acrylated epoxydized soybean oil (AESO), different aromatic comonomers, synthetic divinylbenzene (DVB) or bio-based vanillin dimethacrylate (VDM), bio-based reactive diluent myrcene (MYR), and 3 mol.% of photoinitiator 2,2-dimethoxy-2-phenylacetophenone (DMPA). Commercial synthetic resin Autodesk PR48 Clear (REF) was used for comparison.

Sample No.	Molar ratio of AESO:MYR: DVB	Sample No.	Molar ratio of AESO:MYR: VDM
S 1	1:1:1	S 6	1:1:1
S 2	1:1:3	S 7	1:1:3
S 3	1:1:5	S 8	1:1:5
S 4	1:3:1	S 9	1:3:1
S 5	1:5:1	S10	1:5:1

Time dependencies of storage modulus G' of the resins with different aromatic compounds: DVB (a) and VDM (b). The dependency of the gel time (t_{gel}) of the resins on the amount of MYR (solid) and aromatic compound (dashed) (c) were monitored with rheometer MCR302 from Anton Paar equipped with the plate/plate measuring system (d). The samples were irradiated using UV/Visible spot curing system OmniCure S2000, Lumen Dynamics Group Inc.

