

Interaction between L. monocytogenes and P. fluorescens in dual-species biofilms under simulated dairy processing conditions

Presented by

Francesca Maggio, Chiara Rossi, Clemencia Chaves-López, Annalisa Serio, Luca Valbonetti, Francesco Pomilio, Alessio Pio Chiavaroli, Antonello Paparella*

 $\bigcirc \bigcirc \bigcirc \bigcirc$

Microbial Biofilms

• • • Multi-species biofilms

Involve inter-species interactions, such as between *Pseudomonas fluorescens* and *Listeria monocytogenes*

••• Food Plant Management

Persistent biofilms on dairy plants surfaces

Food spoilage and Safety

Economic losses

Δ > ۲ _ ∢ Δ Ζ Σ 0 m Λ D D \bigcirc \bigcirc \bigcirc

Aim of the study

Evaluation of the L. monocytogenes and P. fluorescens as well as the model system

interactions between in dual-species biofilms simulating dairy processing conditions, capability of *P. fluorescens* in co-culture to produce the **blue pigment** in a **cheese**

(ullet) (ullet)

Experimental Plan

d

Mono- and dualspecies biofilm structure

LIVE/DEAD BacLight Bacterial Viability kit; observation of pyoverdine fluorescence produced by P. fluorescens

Bacterial strains

The most prevalent serotype was the 1/2b, followed by 1/2a, 1/2c and 4b

8 different combined ApaI-AscI pulsotypes recognized
 Table 1. Listeria monocytogenes and Pseudomonas fluorescens strains used in the study.

Species	Strain name	Source of isolation	Serotype	Pulsotype ApaI	Pulsotype AscI
L. monocytogenes	LM1	Gorgonzola cheese	1/2b	GX6A12.0051	GX6A16.0071
L. monocytogenes	LM2	Mozzarella cheese	4b	GX6A12.0073	GX6A16.0010
L. monocytogenes	LM3	Gorgonzola cheese	1/2a	GX6A12.0032	GX6A16.0029
L. monocytogenes	LM4	Caciotta cheese	1/2a	GX6A12.0390	GX6A16.0271
L. monocytogenes	LM5	Environmental	1/2b	GX6A12.0349	GX6A16.0255
L. monocytogenes	LM6	Environmental	1/2b	GX6A12.0005	GX6A16.0009
L. monocytogenes	LM7	Environmental	1/2c	GX6A12.0373	GX6A16.0261
L. monocytogenes	LM8	Environmental	1/2c	GX6A12.0002	GX6A16.0007
P. fluorescens	pf5	Mozzarella cheese			

RESULTS

S

RESULTS

∢ Z Σ D D \bigcirc \bigcirc \bigcirc

Sessile cells on SS coupons

- *L. monocytogenes* LM5 was able to adhere on SS surface
- *P. fluorescens* pf5 increased the population of *L. monocytogenes* in dual-species biofilms (48 h)
- Culture conditions (mono- or dual-species) did not influence *P. fluorescens* pf5 population level

In planktonic status...

- *P. fluorescens* pf5 in single-species showed a greater increase in load over time compared to *L. monocytogenes* LM5
- *P. fluorescens* pf5 determined a slight decrease of *L. monocytogenes* LM5 counts in a dual-species condition (48 h, 96 h)

EPS (carbohydrates) production on SS surface

$\bullet \bullet \bigcirc \bigcirc$

In single-species

No carbohydrates were revealed at 168 h for both strains

$\bullet \bigcirc \bigcirc \bigcirc \bigcirc$

Behaviour

The total amount of carbohydrates in the biofilms were affected by the time and the species involved in biofilm formation

ullet u

<u>In dual-species</u>

Carbohydrates were revealed at high amount (about $2 \mu g/cm^2$) also at the end of the experiment (168 h)

Ζ ٩ _ ۵ IR≺ ∢ Δ Ζ S Σ 0 ш S ш υ ш Δ S ∢ \supset Δ \bigcirc \bigcirc \bigcirc

S

// RESULTS CLSM analysis

- No three-dimensional biofilm architecture was • revealed
- Green agglomerates were present only in the • samples with *P. fluorescens* pf5, suggesting that they could depend on blue pigment formation
- The production of blue pigment by *P. fluorescens* in the Ricotta medium was revealed both in single- and co-culture starting from 72 h

samples

Blue colour: *P. fluorescens* cells due to the pyoverdine fluorescence; Red colour: damaged cells

A) Blue discoloration in the matrix. From the left: Control, P. fluorescens pf5, L. monocytogenes LM5 and dual-species

B) Change of the blue pigment over time. B1) 48 h, B2) 72 h, B3) 96 h, B4) 168 h

END

Conclusions

01

BIOFILM-FORMING ABILITY

L. monocytogenes exhibited capability to form biofilms only on SS coupons, unlike P. fluorescens that showed this ability on both PS and SS surfaces

02

INTERACTION

The presence of *P. fluorescens* increased *L. monocytogenes* sessile population on SS coupons and total carbohydrates amount

The consortium *P. fluorescens* and *L. monocytogenes* could be synergistic S

\rightarrow For the future

Comparison of the gene expression between single- and dual- species biofilms and evaluation of interactions in terms of volatilome will be useful to provide more information on the inter-species consortium

