THE SIBI GROUP

Introduction

All-carbon quaternary stereocenters

- All-carbon quaternary stereocenters are carbon centers that consist of four carbon substituents.
- They are widely present in many natural products, bioactive molecules and drugs.
- Developing a catalytic method to construct all-carbon quaternary stereocenters in enantioselective fashion is a challenging goal:
- due to strong steric repulsion between the carbon substituents. • Installing all-carbon quaternary chiral centers enantioselectively in acyclic system is especially difficult due to conformational flexibility.

Enantioselectivity and cyclopropanation

- Enantioselectivity is a preference for the formation of one enantiomer over the other in a chemical reaction.
- Cyclopropane moieties are widely found in therapeutic agents and biologically active molecules.
- Because most drugs and natural products that contains the cyclopropane ring skeleton are chiral, it is important to develop catalytic methods that produce highly enantioenriched cyclopropanes.
- Michael-Initiated Ring closure (MIRC) reaction with chiral Lewis acid catalysts enables the asymmetric formation of cyclopropanes that contain quaternary and tertiary chiral centers.

Previous Studies

Chiral Lewis acid catalyzed Michael-Initiated Ring Closure (MIRC) reaction to synthesize contiguous tertiary chiral centers

			(11)	1 allo (u.1.)	
1	$Co(ClO_4)_2$	a	16	99:01	95
2	$Ni(ClO_4)_2$	a	16	99:01	95
3	$Ni(ClO_4)_2$	b	16	99:01	80
4	$Ni(OTf)_2$	a	18	99:01	95
5	$Ni(BF_4)_2$	a	18	99:01	95

Ramkumar Moorthy, Novel asymmetric approaches for the construction of small molecules by cyclization and cycloaddition, **2015**, NDSU

- obtained
- centers.
- quaternary chiral centers

Entry	Lewis acid (L.A.)	Diastereon ratio (d.r	
1	$Mg(OTf)_2$ (30 mol%)	N.D.	
2	$Mg(NTf_2)_2$ (30 mol%)	N.D.	
3	$Mg(ClO_4)_2$ anh. (30 mol%)	N.D.	
4	$Cu(OTf)_2(30 \text{ mol}\%)$	N.D.	
5	$Ni(BF_4)_2 \bullet 6H_2O (30 \text{ mol}\%)$	80:8:12	
6	$Ni(ClO_4)_2 \bullet 6H_2O (30 \text{ mol}\%)$	77:11:12	
7	NiBr ₂ (30 mol%)	67:5:28	
8	NiBr ₂ (20 mol%)	63:6:31	
9	NiBr ₂ (10 mol%)	76:3:21	
10	$Ni(BF_4)_2 \bullet 6H_2O (10 mol\%)$	83:6:11	

- **6)** Enantiomeric excess (ee%) 26 97 13 98 98

for the generous financial support.