

Matrix and preservation technology dependent stability and bioaccessibility of strawberry anthocyanins during storage

> Anna-Sophie Stübler, Lena Böhmker, Andreas Juadjur, Cornelia Rauh, Avi Shpigelman, Kemal Aganovic

> > 10-25 November 2020 Foods 2020 - Online

Background – Market growth & Anthocyanins

Materials and Methods – Processing & Analyses

Results - Anthocyanin kinetics during storage and Bioaccessibility

Conclusion

Functional Food is major **trend** influencing the food sector by 2035¹

European **smoothie market grows** at CAGR of **6.8 %** by 2025 ²

1 Moller, B., Voglhuber-Slavinsky, A., Dönitz, E., & Rosa, A. (2019). *50 trends influencing Europe's food sector by 2035* 2 Market Data Forecast. (2020). *Europe Smoothies Market*.

FORMULATION

1. Strawberry-Kale-Mix

2. Strawberry-Water-Mix

Ratio 1:1 pH 4

P	ROCESSING	3				
	Thermal					
	Temperature	72 [°] C				
	Time	60 s				
4	Pulsed Electric Field HVP 5 kW Elea@ Temperature in 35 °C					
	Temperature _{out}		58 [°] C	;		
	Electric field stre	11.2 kV/	/cm	84		
	Specific energy		120 k.	J/I		
(?)	HPP			HPP V	Vave 6000/55	
	Pressure	600 MF	Pa	Hiperb	aric, Spain	
	Time	1 mir	<u>1</u>	4		
	Temperature	RT			WHERE AND	

Control (untreated)

STORAGE

4 °C for 42 days

ANALYSES

Anthocyanins (HPLC-DAD)

Bioaccessibility of anthocyanins during *in-vitro* digestion

Degradation rate constant (k)

- Higher for strawberry-kale-mix compared to strawberry-water
 → oxidative enzyme activity originating from kale
- Processing decreased degradation rate constant
- Structure dependent degradation rate constant
 - \rightarrow Cyanidin vs. Pelargonidin: hydroxyl group at B-ring
 - → Pelargonidin-glucoside vs. P-malonyl-g: malonyl moiety
 - → Glucoside vs. Rutinoside: saccharide size
 - \rightarrow Pyranoanthocyanins: stable and built during storage

e constant (*k*)

ANTHOCYANIN KINETICS DURING STORAGE

Bioaccessibility (BA): available fraction for absorption (ratio of respective sample before digestion)

Gastric BA

- Increased (> 1) due to low pH during gastric phase
- Thermal and PEF > Control and HPP
 - \rightarrow increased extraction due to temperature effect
- Higher for strawberry-kale compared to strawberry-water
 → increased released from possible complexes
- Higher after storage → polymerization of anthocyanins

Intestinal BA

- Regardless of formulation, processing and storage
- Relatively low in a range of 20-30 %

			After processing	After storage
	Control	G	1.11 ± 0.02^{b}	-
		Ι	0.27 ± 0.01 ^{cd}	-
	Thermal	G	1.10 ± 0.02^{b}	1.15 ± 0.01 ^c
Strawberry	mermai	Т	0.19 ± 0.01^{e}	0.14 ± 0.00^{d}
-water	PEF	G	1.13 ± 0.02^{b}	1.21 ± 0.02^{c}
	PEF	Ι	0.30 ± 0.01 ^{ab}	0.24 ± 0.00^{b}
	НРР	G	1.14 ± 0.01^{b}	1.30 ± 0.01^{c}
		Ι	0.24 ± 0.01^{d}	0.20 ± 0.00^{bc}
	Control	G	1.27 ± 0.02 ^a	-
		Ι	0.28 ± 0.01^{bc}	-
	Thermal	G	1.25 ± 0.01 ^a	2.17 ± 0.18 ^a
Strawberry	mermai	Ι	0.19 ± 0.01^{e}	$0.19 \pm 0.03^{\circ}$
-kale-mix	PEF	G	1.27 ± 0.03 ^a	2.17 ± 0.04 ^a
		Ι	0.32 ± 0.01 ^a	0.40 ± 0.02^{a}
	НРР	G	1.29 ± 0.02 ^a	1.81 ± 0.03^{b}
		I	0.26 ± 0.01 ^{cd}	0.20 ± 0.02^{bc}

Processing Formulation (including kale) Anthocyanin structure

Strong effect on stability and gastric bioaccessibility of anthocyanins during storage

Outlook

- Development of products with improved nutritional quality
 - \rightarrow processing and matrix interactions to be considered

- DIL

Thank you for your attention!

DIL German Institute of Food Technologies

Advanced Technologies Anna-Sophie Stübler Prof.-v.-Klitzing-Str. 7 D – 49610 Quakenbrück

