

The 1st International Electronic Conference on Food Science and Functional Foods 10–25 NOVEMBER 2020 LONGING

IO foods **MDP**

DE GRANADA

INIVERSIDADE FEDERAL

DO RIO DE IANEIRO

Preliminary discrimination of commercial extra virgin olive oils from Brazil by geographical origin and olives' cultivar: A call for broader investigations

Aline Gabrielle Alves de Carvalho¹, Lucía Olmo-García², Bruna Rachel Antunes Gaspar¹, Alegría Carrasco-Pancorbo², Vanessa Naciuk Castelo-Branco^{3,} and Alexandre Guedes Torres¹

 ¹ Laboratory of Nutritional Biochemistry and Food Science, Lipid Biochemistry and Lipidomics Laboratory, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
² Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Ave. Fuentenueva s/n, E-18071 Granada, Spain;

³ Laboratory of Food Biotechnology, Fluminense Federal University, Niteroi 24230-340, RJ, Brazil;

November 2020

Introduction

Olive oil imports by Brazil (t)

Olive oil production in Brazil (L)

250000

Carvalho et al, 2020

Carvalho et al, 2020

Factors that influence on olive oil composition

Cultivar and ripening degree

Edaphoclimatic conditions

Conditions of olive oil production

Factors that influence on olive oil composition

Cultivar and ripening degree

Edaphoclimatic conditions

Conditions of olive oil production

Multivariate analysis

Objective

To achieve a preliminary discrimination of commercial olive oils produced in Brazil according to olives' cultivar and region of production by applying multivariate analysis to the oils' compositional profiles.

Samples and Methods

EVOO sampling

All data used to perform multivariate analysis are available in the previously mentioned publication, and ranged among samples as follows:

All data used to perform multivariate analysis are available in the previously mentioned publication, and ranged among samples as follows:

Carvalho et al, 2020

All data used to perform multivariate analysis are available in the previously mentioned publication, and ranged among samples as follows:

All data used to perform multivariate analysis are available in the previously mentioned publication, and ranged among samples as follows:

Minor components by NP-LC-DAD/FLD (mg/kg)

4 Tocopherols

• n.d. to 267

2 Free sterols

• n.d. to 1739

6 Pigments

• n.d. to 25.1

8 Volatile and semivolatile compounds (μg/g)

n.d. to 18.5

Carvalho et al, 2020

All data used to perform multivariate analysis are available in the previously mentioned publication, and ranged among samples as follows:

Carvalho et al, 2020

Figure 1. Minor component profiles (mg/kg) of the studied EVOOs determined by reversed phase (RP)-LC-MS (sample identification in Table 3): (a) Secoiridoids; (b) lignans; (c) simple phenols, phenolic acids, and related substances; (d) flavonoids; (e) triterpenic compounds; and (f) free fatty acids. SE, Samples from the Southeast. S, Samples from the South. • Compounds quantified in mg of homologous substance/kg, as shown in Table S5a.

Carvalho et al, 2020

Representative figure to

Results

Conclusion

Thank you!

Email: alinegac@gmail.com

References

- 1. International Olive Oil Council (IOC). Available online: https://www.internationaloliveoil.org/wpcontent/uploads/2020/07/IOC-NEWSLETTER-151-July-2020-def.-.pdf (accessed on 7 October 2020).
- Carvalho, A.G.A.; Olmo-García, L.; Gaspar, B.R.A.; Carrasco-Pancorbo, A.; Castelo-Branco, V.N.; Torres, A.G. Evaluating Quality Parameters, the Metabolic Profile, and Other Typical Features of Selected Commercial Extra Virgin Olive Oils from Brazil. *Molecules* 2020, 25(18), 4193.
- 3. Kyçyk, O.; Aguilera, M.P.; Gaforio, J.J.; Jiménez, A.; Beltrán, G. Sterol composition of virgin olive oil of forty-three olive cultivars from the World Collection Olive Germplasm Bank of Cordoba. *J Sci Food Agric*. **2016**, *96*(*12*), 4143-4150.
- Martakos, I.; Kostakis, M.; Dasenaki, M.; Pentogennis, M.; Thomaidis, N. Simultaneous Determination of Pigments, Tocopherols, and Squalene in Greek Olive Oils: A Study of the Influence of Cultivation and Oil-Production Parameters. *Foods*, 2020, 9(1), 31.
- 5. Di Vaio, C.; Nocerino, S.; Paduano, A.; Sacchi, R. Influence of some environmental factors on drupe maturation and olive oil composition. *J Sci Food Agric*. **2013**, *93*(*5*), 1134-1139.
- 6. Aguilera, M.P.; Beltrán, G.; Ortega, D.; Fernández, A.; Jiménez, A.; Uceda, M. Characterisation of virgin olive oil of Italian olive cultivars: Frantoio'and Leccino', grown in Andalusia. *Food chem.* **2005**, *89*(3), 387-391.
- Mousa, Y.M.; Gerasopoulos, D.; Metzidakis, I.; Kiritsakis, A. Effect of altitude on fruit and oil quality characteristics of 'Mastoides' olives. *J Sci Food Agric*. 1996, 71(3), 345-350.