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Virgin coconut oil (VCO) is an oil that is recognized as a functional food which has been gaining in popularity globally. VCO is defined as the oil that is obtained directly from fresh mature coconut meat without the use of chemicals and high heat [3] and can be produced using three main processes: fermentation, centrifuge and expeller.  It will be our control sample.  It is a colorless premium product with residual hint of coconut aroma. However it is prone to rancidity. As a result most of the mass consumed oil is sourced from dried copra which is then refined, bleached, and deodorized resulting in RBDCO which is much more stable and more neutral in taste and aroma. VCO is plagued by quality control issues on sample stability in long storage or the adulteration with cheaper oils. Representative samples of those types of coconut oils will be used in this study.


ﬂ Instrumental Methods for Differentiating VCO

VCO Old

IPDroduction VCO
rocesses

Method

Analytes

VCO + RBDCO
Adulteration

Remarks

Headsp&cse / GC- Volatile o gﬁ;?oi%jomp ounds Yes Partial* No data No data Sample preparation is extensive
FTIR IR Profile No data No data No data No data Did not account for adulteration
of VCO by RBDCO
DSC Th/%n;?%/; rpo ;‘755/7 a No data No data No data No data Did nog ?[C/%OOU/;; % gguolz‘eraz‘/on
31P NMR %anggg//;iﬁc;‘_fgf!%jfzggfé/ Yes Not conclusive ~ No data No data Needs derivatization step,

content

multi-component NMR solvent
mixture with pyridine

*Only Fermentation VCO was differentiated from the rest
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One of the biggest challenges we hope to address is the development of methods for quality control of VCO as it is produced by a variety of processes and rancid VCO samples and RBDCO are not that much physico-chemically different from control VCO. Other studies on differentiation and adulterations of VCO focused on using other chemically distinct oils. Instrumental methods that can discern VCO from RBDCO and by manufacturing process are GC-MS/Headspace and 31P NMR to varying degrees. 


@ Research Objectives

Using 13C NMR Profiling and linear methods are the following
situations possible?

- Differentiate Control VCO from Not Control VCO using Binary
Classifiers (one vs one)

- Control VCO vs Not Control VCO, Oil Type - RBDCO
Sample Type - Control VCO vs Not Control VCO, QOil Type - Old VCO
- Control VCO vs Not Control VCO, Oil Type - Adulterated VCO

Differentiate by

- Differentiate Control VCO by Manufacturing Processes using

- - Binary Classifiers (one vs rest)
Dlﬁ:e rentiate by VCO - Fermentation VCO vs Not Fermentation VCO

Process - Centrifuge VCO vs Not Centrifuge VCO
- Expeller VCO vs Not Expeller VCO
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We evaluate the use of 13C NMR Profiling to differentiate VCO. It allows for simpler sample preparation and ability to do unattended longer runs inherent in the method. We designed binary classifiers to differentiate Control VCO from Not Control VCO and the various VCO manufacturing Processes. We limit ourselves initially to linear methods as they are easier to setup, interpret and less computationally intensive.


Methodology (Metabolomics Workflow)

° o Feature Feature Feature A
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Al i ﬁ‘
g g ~ A2 | Aav1 | aav2 | A2v3 ~
A3 /

: : : . Unsupervised : :
Instrumental Analysis Exploratory Analysis Supervised Analysis
4

Sampling NMR S . PLS-DA
_ pectra Processing Internal Standard (1,4- PCA o B ~
(=28) dioxane) (MetaboAnalyst 4.0 - Protocol 3 el By Casalille
8 (MetaboAnalyst 4.0 - Protocol 1)
13C NMR Alignment, Peak Shifting

(Bruker Avance Neo 400) (NMRPROCFLOW)

Optimize # of Evaluate by R2, Q2, Accuracy
Auto-scaling PLSpDA-variables (MetaboAnalyst 4.0 - Protocol 3)
(MetaboAnalyst 4.0 - Protocol 1)
o Evaluate Accuracy by AUC-
Optimize # of ROC Curves
Features (MetaboAnalyst 4.0 - Protocol 5)

Determine Statistical
Significance by Permutation
Tests
(MetaboAnalyst 4.0 - Protocol 35)
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The Methodology follows the general outline of a Metabolomics Workflow. 13C NMR Profiling was used as the instrumental method. NMR Spectra processing was automatically done by Bruker Topspin. Additional pre-processing methods such as spectral alignment, peak shifting, and variable bucketing was done using NMRPEOCFLOW. Statistical Processing was done on MetaboAnalyst 4.0. Protocol 1, data normalization was used, Protocol 3 was used for Unsupervised Analysis using PCA and initial PLS-DA optimization. Protocol 5 was then used to generate optimized PLS-DA models which were evaluated using ROC curves and Permutation Tests.


.E Control VCO and Not Control VCO Samples ( n = 98)

Classification of Data -
For Model Develooment Training Validation  Sub-Total per SHorslEl Total
e P (Observed) 2 (Submitted)® VCO Process Samples
and Validation Sample Type
Fermentation
14 5 19
Control VCO / Ce/[;zglgu -
VCO Process VCO &' 13 5 18 57
Type Expeller 15 5 20
Sample Type Vco 98
RBDCO 11 10 ¢ 21
Not Control VCO Old 7 4c 11
/" Ol Type 499, e
Adulterated 6 3¢ 9
VCO
D ipti f les: ¢ Validati ' ‘M
ST e o S, B e
2 Training (Observed) : Control VCO Qgrlgslgtsswm'tted Control VCO Samples chosen randomly

Samples
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The Oil Samples consisted of Control VCO samples representative of the three manufacturing Processes, Fermentation, Centrifuge, and Expeller. Samples whose manufacturing process was observed was used as training set while submitted samples were used as validation set using manual holdout and as training for the cross-validation schemes. The Not Control VCO samples, RBDCO, Old VCO and Adulterated VCO samples were also similarly divided into training sets and validation sets randomly.


Instrumental Analysis - 13C NMR Profiling

- Oil Sample: 350 pL 13C C13CPD VCO Sample
- NMR Tube: 5 mm High Throughput
SElnlWl - Solvent: 230 pL (2.9% 1,4-dioxane Internal Standard (IS) in
Preparation @bIelkE]
- Bruker Avance Neo 400 NMR
- 13C at 100 MHz standard pulse sequence G
NMR - 64K points; 4K scans; SW: -8.6 ppm to 219.3 ppm; autogain; £
NSO VT = 300K g
- Fourier Transformation
- Apodization—exponential multiplication: 1 Hz m
NMR : : L L L
- Auto-phasing and baseline optimization—apbk
200 190 180 170 160 150 140 130 120 110100 90 80 70 60 50 40 30 20 10 O

Processing

Chemical Shift (ppm)
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1,4 dioxane as Internal Standard in CDCl3 and used as NMR solvent and mixed with the oil samples in 5mm NMR High Throughput tubes. Routine 13C complete composite decoupling NMR pulse sequence was used with acquisition at 300K. Standard automatic Bruker Topspin NMR processing parameters were used.
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Significant data transformations were employed such as spectral alignment and sample normalization  before the statistical analysis were done. This is to improve performance of the models and improve the statistical soundness of the method.
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Principal Component Analysis of the Binary classifiers for Control VCO versus the Not Control VCO Samples  (versus RBDCO, versus Old VCO, versus Adulterated VCO) indicate good separation which makes for promising models.


++* PCA: VCO Processes
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Principal Component Analysis of the Binary classifiers for VCO Manufacturing Processes  (Fermentation, Centrifuge and Expeller) show the samples are scattered in the plot area with a lot of overlapping samples. This point out that models generated from the classifiers may have poor performance.


PLS-DA: Evaluation by R2, Q2, Permutation Tests, Receiver Operating
Characteristic (ROC) Curves in Binary Classifiers & Cross-Validation

YA Maximize R2 and Q2
Model Fit

while minimizing number

of PLS-DA variables for ROC Curve ROC Curve
* R2 optimization L’
:'_: AuC = 100% e + '_;; E ROC Curve » ::‘
8 Measure of Model 2 & = 5 =
o8 . oo = - = = 2
£s 08 o Predictability 2 - 7 2 .
& E L <= "Chance" line = = o !
= - = = =
. # [ - - AuC = 75% ROC Curve s
-
0 v FPR {1 = Specificity) FPR (1 = Specificity) FPR (1 - Specificity) FPR {1 = Specificity)
Number of variables in model
observed cluster observed cluster Excellent [ Mo Separphaliiy Prablematic >
mass' ,mass’

g g Overlap = How well the model separates Negatives and Positives

. :

**+ 3+

cluster mass (summed t-vajues) cluster mass (summed t-vaWes)
Case A: Observed Cluster likely Case B: Observed Cluster unlikely I:|r1.'l1|'::.|-'!
to occur by chance to oceur by chance
p> 005 p< 005
Model may NOT be Model is Statistically
Statistically Significant Significant PLS-DA and AUC-ROC should be high for best model.

(PLS-DA gives the ratio of correct predictions vs total

value must be as low as possible to ensure results -2
P P predictions = model overall accuracy)

are statistically significant for Permutation Tests
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Partial Least Squares – Discriminant Analysis or PLS-DA performance are evaluated by R2 which is a measure of the model linear fitness, Q2 which is a measure of model predictability and accuracy which is the closeness of the class prediction to the actual value. We want to optimize their values by maximize the R2, Q2 and accuracy  as close to one wile minimizing the number of variables for the model. Using Permutation Tests on the generated models indicate how statistically significant are they by aiming for a low p-value of less than 0.05 by convention. Binary classifiers are conveniently evaluated by the Area of the Curve or AUC of the Receiver Operating Characteristic curves which is a better measure as a function of model sensitivity  and specificity compares to just scalar accuracy or error rates. We optimize the model by maximizing the AUC-ROC as close to 1 which indicates a higher separation for the true negatives and true positive values.


Validated and Cross-Validated PLS-DA Model of
qk Control VCO vs Not Control VCO indicate they may
be Good to Perfect Models

Overall Permutation AUC-ROC  Overall

PLS DA Binary Models  (HEY R Py HCE0C AICROC (Opimied fceumy siifcace
Model) Model) ModeD  Mode) (CPtmized Model
Fermentation 5060  >020 <02 b = 0002 NA NA NA NA NA (Statis';‘zg[lyms‘?gr?i‘ﬁCant)
VCC(;) n;:gLZsioT){pe Cer\l/tclgiglge > WAl <0y S0z P = LAl A A WA A A (Not staltaizgzawyoi?énificant)
Expeller VCO > 060 > 020 <02 b = 0149 NA NA NA NA NA ot Sta';‘;ggarl'l‘;izmﬁcant)
woco  >os0  som Wi pcoo  (PEECL 111 pcammos g femedd
> 020
et COoilntr'(lz)l/pveco / VoCldO > Ol > 040 ?aﬁzg{: :)I p = 0.001 (CIOZ)BEI; 0829294) (Cl: 83377 - 1) Ot = p =003 (MarginalE/X(;?;ng:icrgl?ydzligniﬁcant)
> 020
Adu\l/t(e:gted = AU (\Z,EEE:Z:)I S RO ((()ZI8435-6§9014) (Cl: 8."’?9159 - 1) ! ks P (Vs (May not beG(;?aciisTié);jIT; significant)

* Monte-Carlo cross validation (MCCV) with balanced sub-sampling: (2/3) training; (1/3) Validation. The Control VCO / Process Type classifiers did not undergo further cross
validation and cross validation due to low Q2 value.

** The top features with univariate AUC > 0.99 for vs RBDCO, AUC > 0.70 for Old and AUC > 0.90 for vs Adulterated were selected, with 100 cross validations (CV) to generate a
smooth ROC curve with 95% confidence interval.

Graphical Presentation of these values (ROC curves, permutation tests are in the extra slides at the end.
—-—
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Preliminary modeling of classifiers for Control VCO vs Not Control VCO classifiers indicate high overall accuracy and predictive ability and was further evaluated by cross validation and single validation. Of these subsequent model optimizations, only the versus RBDCO and versus Old VCO were statistically significant.
For the Control VCO process classifiers, predictive ability and overall accuracy were too low so any further model validations will no longer be presented. 


Summary of Conclusions

To differentiate Control VCO from Not Control VCO samples, and by VCO Manufacturing
Processes, 13C NMR Profiling and binary linear classifier models were evaluated.

Control VCO vs Not Control VCO

Overall Accuracy / AUC-ROC > 0.80
Good Predictive Ability (Q2 > 0.20)

Control VCO from
RBDCO

(Perfect Model
Performance)

Statistically
Significant

(p< 0.05)

Control VCO from
Oold vCO

(Excellent Model
Performance)

Statistically
Significant

(p< 0.05)

Control VCO from
Adulterated VCO

(Good Model
Performance)

NOT Statistically
Significant

Overall Accuracy < 0.80

VCO Process

Poor Predictive Ability (Q2 < 0.20)

Fermentation VCO from

Not Fermentation VCO
(Unusable Model)

Statistically
Significant

(p< 0.05)

Centrifuge VCO from

Not Centrifuge VCO
(Unusable Model)

NOT Statistically
Significant

Expeller VCO from

Not Expeller VCO
(Unusable Model)

NOT Statistically
Significant
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We were able differentiate Control VCO from RBDCO, Old VCO and Adulterated VCO using 13C NMR Profiling and linear methods. Control VCO versus RBDCO gave us a perfect model, Control VCO versus Old VCO has excellent model performance. Control VCO vs Adulterated VCO as a good model but was not statistically significant enough. The linear models for the VCO manufacturing processes were of poor predictive ability and accuracy and were not usable.
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Extra Slide - Validated and Cross-Validated PLS-DA
Model Performance of Control VCO vs RBDCO

INC
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* Monte-Carlo cross validation
(MCCV) with balanced sub-
sampling: (2/3) training; (1/3)
Validation.

Most models generated would
be considered perfect.

** The top features with
univariate AUC > 0.99 were
selected, with 100 cross
validations (CV) to generate a
smooth ROC curve with 95%
confidence interval.
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Sticky Note
For the PLS Model of Control VCO vs RBDCO, the optimal Q2 value of 4 variables was used. This initial model yielded a p-value < 0.001. Monte Carlo Cross Validation was further used on the entire dataset to optimize the features to be used. The optimized model then underwent a final evaluation of 100 rounds of cross validations and a single validation on the holdout data set. All the validation schemes indicate a perfect model with AUC values close to 1 and clear separation of classes which is still also statistically significant.
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* Monte-Carlo cross validation
(MCCV) with balanced sub-
sampling: (2/3) training; (1/3)
Validation.

AUC 1 as # Features ft

** The top features with
univariate AUC > 0.70 were
selected, and 100 cross
validations (CV) to generate a
smooth ROC curve with 95%
confidence interval.
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Sticky Note
For the PLS Model of Control VCO versus Old VCO, the optimal Q2 value of 3 variables was used. This initial model yielded a p-value < 0.001. Monte Carlo Cross Validation was further used on the entire dataset to optimize the features to be used which gave AUC values around 0.7 to 0.9. The optimized model using features with univariate AUC > 0.70 with then underwent a final evaluation of 100 rounds of cross validations and a single validation on the holdout data set. All the validation schemes indicate an excellent model with AUC values > 0.95  and good separation of classes with small misclassified samples. Permutation Tests on this optimized model indicate it is marginally statistically significant.
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* Monte-Carlo cross validation
(MCCV) with balanced sub-
sampling: (2/3) training; (1/3)
Validation.

AUC U then tt as # Features

** The top features with
univariate AUC > 0.90 were
selected, with 100 cross
validations (CV) to generate a
smooth ROC curve with 95%
confidence interval.
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Sticky Note
For the PLS Model of Control VCO versus Adulterated VCO, the optimal Q2 value of 4 variables was used. This initial model also yielded a p-value < 0.001. Monte Carlo Cross Validation was further used on the entire dataset to optimize the features to be used which gave AUC values around 0.85 to 0.90. The optimized model using features with univariate AUC > 0.90 with then underwent a final evaluation of 100 rounds of cross validations and a single validation on the holdout data set. The cross-validation schemes indicate a good model with AUC values > 0.80 with the single validation generating a perfect model and good separation of classes with small misclassified samples. Permutation Tests on this optimized model however indicate it may be not statistically significant.
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Sticky Note
For the PLS models of Control VCO Processes, the optimal Q2 values were too low for the Fermentation models or even negative for the Centrifuge and Expeller Models. Permutation Tests for the Centrifuge and Expeller models also resulted in very high p-values which makes them not statistically significant. For these reasons it may be inferred that these may be unusable models  and will not be validated further.




