Proceedings - 1st International Electronic Conference on Food Science and Functional Foods 10 - 15 November 2020 Online

Application of 13C NMR and Untargeted Multivariate Analysis for Classification of Virgin Coconut Oil

Lolita G. Lagurin, Mark Joseph M. Garrovillas and Fabian M. Dayrit*

Department of Chemistry, Ateneo de Manila University Quezon City, Philippines 1108 *correspondence: fdayrit@ateneo.edu

ATENEO DE MANILA UNIVERSITY

Author Contributions and Affiliations

Fabian M. DAYRIT, PHD

Project Leader and Professor Emeritus

Conceptualization Funding Acquisition Project Administration Supervision Review and Editing

Mark Joseph M. GARROVILLAS

Research Staff Methodology

Software Formal Analysis Validation Original Draft Visualization

Lolita G. LAGURIN

Senior Research Staff

Resources Investigation Methodology Data Curation Validation Original Draft

Review and Editing

Department of CHEMISTRY

ATENEO DE MANILA UNIVERSITY

Coconut (*Cocos nucifera* L.) Oil Types: Virgin Coconut Oil (VCO) and Refined Bleached Deodorized Coconut Oil (RBDCO) Fresh Coconuts

Instrumental Methods for Differentiating VCO

Method	Analytes	VCO vs RBDCO	VCO Production Processes	Old VCO	VCO + RBDCO Adulteration	Remarks		
Headspace / GC- MS	<i>Volatile organic compounds (VOC)</i>	Yes	Partial*	No data	No data	Sample preparation is extensive		
FTIR	IR Profile	No data	No data	No data	No data	<i>Did not account for adulteration of VCO by RBDCO</i>		
DSC	Thermal Profile and Heat Capacity	No data	No data	No data	No data	<i>Did not account for adulteration of VCO by RBDCO</i>		
31P NMR	<i>Mono- and di-glycerides, free fatty acid (FFA), sterol content</i>	Yes	Not conclusive	No data	No data	Needs derivatization step, multi-component NMR solvent mixture with pyridine		
*Only Fermentation VCO was differentiated from the rest								

Research **Objectives**

Using **13C NMR Profiling** and **linear methods** are the following situations possible?

Differentiate by	 Differentiate Control VCO from Not Control VCO using Binary
Sample Type	Classifiers (one vs one) Control VCO vs Not Control VCO, Oil Type - RBDCO Control VCO vs Not Control VCO, Oil Type - Old VCO Control VCO vs Not Control VCO, Oil Type - Adulterated VCO
Differentiate by VCO	 Differentiate Control VCO by Manufacturing Processes using
Process	Binary Classifiers (one vs rest) Fermentation VCO vs Not Fermentation VCO Centrifuge VCO vs Not Centrifuge VCO Expeller VCO vs Not Expeller VCO

Methodology (Metabolomics Workflow)

Control VCO and Not Control VCO Samples (n = 98)

Classification of Data For Model Development and Validation			Training (Observed) ^a	Validation (Submitted) ^b	Sub-Total per VCO Process	Sub-Total per Sample Type	Total Samples
Sample Type	Control VCO / VCO Process Type	Fermentation VCO	14	5	19		. 98
		Centrifuge VCO	13	5	18	57	
		Expeller VCO	15	5	20		
	Not Control VCO / Oil Type	RBDCO	11	10 c	21		
		Old VCO	7	4 c	11	41	
		Adulterated VCO	6	3 c	9		

Description of Samples:

^a **Training (Observed)** : Control VCO Samples ^b Validation (Submitted): manual holdout submitted Control VCO samples ^c **Validation (Submitted)** : Manual holdout, RBDCO, Old VCO and Adulterated VCO Samples chosen randomly

Instrumental Analysis - 13C NMR Profiling

Chemical Shift (ppm)

Spectral Alignment and Normalization

(by Features and by Samples)

Control VCO vs RBDCO has clear clustering of samples. Control VCO vs Old VCO and Adulterated VCO may be good models.

SCIFORUM-036131

SLIDE10 OF 17

Models based on VCO Processes may NOT be good models; overlapping samples

PLS-DA: Evaluation by R2, Q2, Permutation Tests, Receiver Operating Characteristic (ROC) Curves in Binary Classifiers & Cross-Validation

are statistically significant for Permutation Tests

predictions = model overall accuracy)

Validated and Cross-Validated PLS-DA Model of Control VCO vs Not Control VCO indicate they may be Good to Perfect Models

PLS-DA Binar	y Models	Overall Accuracy (Preliminary Model)	R2	Q2	Permutation Test (Preliminary Model)	AUC-ROC	AUC-ROC (100 CV**)	AUC-ROC (Optimized Validation Model)		Statistical Significance (Optimized Model)	Remarks	
	Fermentation VCO	> 0.60	> 0.20	< 0.2	p = 0.002	NA	NA	NA	NA	NA	Poor model (Statistically significant)	
Control VCO / VCO Process Type	Centrifuge VCO	> 0.40	< 0.20	< 0.2	p = 0.403	NA	NA	NA	NA	NA	Poor model (Not statistically significant)	
	Expeller VCO	> 0.60	> 0.20	< 0.2	p = 0.149	NA	NA	NA	NA	NA	Poor model (Not statistically significant)	
Not Control VCO / Oil Type	RBDCO	> 0.80	> 0.60	> 0.60 (4 optimal variables)	p < 0.001	0.996 - 1 (Cl: 0.949 - 1)	1 (Cl: 1 - 1)	1	1	p < 2.502e-05	Perfect model (Statistically significant)	
	Old VCO	> 0.80	> 0.40	> 0.20 (3 optimal variables)	p = 0.001	0.733 - 0.922 (Cl: 0.447 - 0.994)	0.957 (CI: 0.847 - 1)	0.984	0.9	p = 0.03	Excellent model (Marginally statistically significant)	
	Adulterated VCO	> 0.80	> 0.40	> 0.20 (4 optimal variables)	p < 0.001	0.843 - 0.904 (Cl: 0.568 - 1)	0.819 (Cl: 0.595 - 1)	1	0.944	p = 0.241	Good model (May not be statistically significant)	

* Monte-Carlo cross validation (MCCV) with balanced sub-sampling: (2/3) training; (1/3) Validation. The Control VCO / Process Type classifiers did not undergo further cross validation and cross validation due to low Q2 value.

** The top features with univariate AUC > 0.99 for vs RBDCO, AUC > 0.70 for Old and AUC > 0.90 for vs Adulterated were selected, with 100 cross validations (CV) to generate a smooth ROC curve with 95% confidence interval.

Graphical Presentation of these values (ROC curves, permutation tests are in the extra slides at the end.

Summary of **Conclusions**

To differentiate Control VCO from Not Control VCO samples, and by VCO Manufacturing Processes, 13C NMR Profiling and binary linear classifier models were evaluated.

Control	VCO vs Not Cor	ntrol VCO	VCO Process				
	Accuracy / AUC-RO Predictive Ability (Q2)		Overall Accuracy < <i>0.80</i> Poor Predictive Ability (Q2 < 0.20)				
Control VCO from RBDCO (Perfect Model Performance)	Control VCO from Old VCO (Excellent Model Performance)	Control VCO from Adulterated VCO (Good Model Performance)	Fermentation VCO from Not Fermentation VCO (Unusable Model)	Centrifuge VCO from Not Centrifuge VCO (Unusable Model)	Expeller VCO from Not Expeller VCO (Unusable Model)		
Statistically Significant (p < 0.05)	Statistically Significant (p < 0.05)	NOT Statistically Significant	Statistically Significant (p < 0.05)	NOT Statistically Significant	NOT Statistically Significant		

Other Institutions Funding Agency

Research Staff

Grace B. Tantengco

Jerika Mae A. Arceo

Research Collaborator

University of the Philippines College of Home Economics

SCIFORUM-036131

SLIDE15 OF 17

Image Credits

https://sc01.alicdn.com/kf/ULB8X023s3nJXKJkSaelq6xUzXXaE.jpg https://qph.fs.quoracdn.net/main-qimg-971742690527754ccbd157e0cb7eba88.webp http://www.bestoilpressmachines.com/uploads/allimg/crude-edible-oil-refined-edible-oil.jpg https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3460701/bin/opth-6-1499f6.jpg https://storage.ning.com/topology/rest/1.0/file/get/1341805045?profile=RESIZE_710x

Marina, A.M.; Che Man, Y.B.; Amin, I. Virgin coconut oil: emerging functional food oil. Trends Food Sci. Technol. 2009, 20, 481-487.

Bawalan, D.D. The Right Technology to Process Quality Virgin Coconut Oil for the Global Market. Coco Info Int. 2016, 23, 13-19.

Pham, L.J. Coconut (Cocos nucifera). In Industrial Oil Crops; McKeon, T.A., Hayes, D.G., Hildebrand, D.F., Weselake, R.J., Eds.; Elsevier, 2016; pp. 231–242 ISBN 978-1-893997-98-1

Rohman, A.; Irnawati; Erwanto, Y.; Lukitaningsih, E.; Rafi, M.; Fadzilah, N.A.; Windarsih, A.; Sulaiman, A.; Zakaria, Z. Virgin Coconut Oil: Extraction, Physicochemical Properties, Biological Activities and Its Authentication Analysis. Food Rev. Int. 2019, 1–21, doi:10.1080/87559129.2019.1687515.

Santos, J.E.R.; Villarino, B.J.; Zosa, A.R.; Dayrit, F.M. Analysis of Volatile Organic Compounds in Virgin Coconut Oil and their Sensory Attibutes. Philipp. J. Sci. 2011, 140, 161–171.

Liland, K.H. Multivariate methods in metabolomics – from pre-processing to dimension reduction and statistical analysis. TrAC Trends Anal. Chem. 2011, 30, 827–841, doi:10.1016/j.trac.2011.02.007.

Worley, B.; Powers, R. Multivariate Analysis in Metabolomics. Curr. Metabolomics 2012, 1, 92–107, doi:10.2174/2213235X11301010092.

Dayrit, F.M.; Dios, A.C. de 1H and 13C NMR for the Profiling of Natural Product Extracts: Theory and Applications. In Spectroscopic Analyses - Developments and Applications; Sharmin, E., Zafar, F., Eds.; IntechOpen: Rijeka, 2017.

Jacob, D.; Deborde, C.; Lefebvre, M.; Maucourt, M.; Moing, A. NMRProcFlow: a graphical and interactive tool dedicated to 1D spectra processing for NMR-based metabolomics. Metabolomics 2017, 13, 36, doi:10.1007/s11306-017-1178-y.

Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr. Protoc. Bioinforma. 2019, 68, e86, doi:10.1002/cpbi.86.

Xia, J.; Broadhurst, D.I.; Wilson, M.; Wishart, D.S. Translational biomarker discovery in clinical metabolomics: an introductory tutorial. Metabolomics 2013, 9, 280–299, doi:10.1007/s11306-012-0482-9

R Core Team R: A Language and Environment for Statistical Computing 2020.

Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686, doi:10.21105/joss.01686.

Sievert, C. Interactive Web-Based Data Visualization with R, plotly, and shiny; Chapman and Hall/CRC, 2020; ISBN 9781138331457.

Extra Slide - Validated and Cross-Validated PLS-DA Model Performance of Control VCO vs RBDCO indicate a Perfect Model

* Monte-Carlo cross validation (MCCV) with balanced subsampling: (2/3) training; (1/3) Validation.

Most models generated would be considered perfect.

** The top features with univariate AUC > 0.99 were selected, with 100 cross validations (CV) to generate a smooth ROC curve with 95% confidence interval.

Extra Slide - Validated and Cross-Validated PLS-DA Model of Control VCO vs Old VCO indicate an Excellent Model Performance

Extra Slide - Validated and Cross-Validated PLS-DA Model of Control VCO vs Adulterated VCO indicate a Good but NOT Statistically Significant Model Performance

** The top features with univariate AUC > 0.90 were selected, with 100 cross validations (CV) to generate a

Extra Slide - Cross Validated PLS-DA Model of VCO Process Binary Classifiers Generated Unusable Models

