

Antimicrobial activity and nutraceutical potential of Tuscan bee-pollens on oxidative and endoplasmic reticulum stress in different cell-based models ⁺

Morena Gabriele ^{1,*}, Stefania Frassinetti ¹ and Laura Pucci ¹

¹National Research Council, Institute of Agricultural Biology and Biotechnology (IBBA), Pisa Unit, Research Area of Pisa, Via Moruzzi 1, 56124, Pisa, Italy.

*Correspondence: <u>morena.gabriele@ibba.cnr.it</u>

 ✓ Bee-pollen is an apicultural product of great interest owing to its high nutritional and therapeutic properties such as antioxidant, anti-inflammatory, antimicrobial, anti-mutagenic, and antitumor effects

 \checkmark Bee-pollen is an important source of energy, bioactive compounds and proteins for human nutrition

 \checkmark To the best of our knowledge, no data on bee-pollen effects on endoplasmic reticulum stress are available in the literature

This study aimed to assess the *ex vivo* antioxidant activities and the antimicrobial potential of *Castanea, Cistus* and *Rubus* bee-pollens

> Besides, we analyzed, for the first time, the effects of *Castanea* bee-pollen on functional properties of human microvascular endothelial cells (HMEC-1) under endoplasmic reticulum (ER) stress condition

In a previous study (*Gabriele et al., 2015*) we investigated the botanical origin, the phytochemical profile and the free-radical scavenging activity of a polyfloral Tuscan bee-pollen separated by color into three botanical families, specifically *Castanea*, *Rubus* and *Cistus*.

Castanea bee-pollen showed the better phytochemical content

Castanea spp.

Cistus spp.

Rubus spp.

	Phenolics (mg GAE/g dw)	Flavonoids (mg CE/g dw)	Flavonols (mg QE/g dw)	Ascorbic acid (mg AAE/g dw)	Anthocyanins (mg C3GE/L)	ORAC (µmol TE/100 g dw)
Castanea	24.8±0.8***	15.9±0.6***	4.8±0.1*	12±0.2***	77.4 ±2.6***	54401±475
Cistus	21.2±0.2	14.2±0.6***	4.9±0.05**	9.1±0.5	52.6±3.5	54001±1720
Rubus	13.5±0.4***	5.9±0.3***	2.5±0.1***	6.8±0.3**	58.5±4.7	51945±1507
Polyfloral	21.3±0.5	11.6±0.4	4.5±0.15	8.5±0.4	51.2±1.2	67770±1292

Phytochemical profile and *in vitro* antioxidant activity of polyfloral and *Castanea* spp., *Cistus* spp. and *Rubus* spp. bee pollen extracts. * different from polyfloral bee pollen, with * $p \le 0.05$; ** $p \le 0.01$ and *** $p \le 0.001$. *Gabriele M. et al.*, *Ital J Food Sci.* 2015, 27, 248-59

✓ Antimicrobial activity: minimum inhibitory concentration (MIC) determination

- ✓ Cell culture: Human microvascular endothelial cells (HMEC-1)
- ✓ **Cell functionality**: viability
- ✓ Intracellular ROS production: DCFH-DA assay
- ✓ **Gene expression**: real-time PCR

- (A) Effects of *Castanea*, *Cistus*, and *Rubus* bee-pollen extracts (100μg/ml) on the cellular antioxidant activity (CAA) of oxidized human erythrocytes. Quercetin (8μM) was used as the reference standard.
- (B) Effects of increasing concentrations (20, 50, 100, and 200µg/ml) of *Castanea*, *Cistus* and *Rubus* bee-pollen extracts on erythrocytes AAPH-induced oxidative hemolysis. Trolox (10 and 50µM) was used as astandard.

Results were expressed as mean \pm SD. One-way ANOVA with Tukey's multiple comparison test: *significantly different from CNT (AAPH-treated cells), *p<0.05, **p<0.01, ***p<0.001.

		Minimum inhibitory concentration (MIC) values							
	Strains		Castanea	Cistus			• Rubus		
-	Escherichia coli	•	10 mg/ml	•	10 mg/ml		• -		
•	Salmonella Typhimurium	•	10 mg/ml	•	10 mg/ml		• -		
•	Enterobacter erogene		• -	•	10 mg/ml		• -		
•	Enterococcus faecalis		• -	•	5 mg/ml	•	10 mg/ml		
•	Staphylococcus aureus	•	10 mg/ml	•	5 mg/ml	•	10 mg/ml		

Minimum inhibitory concentration (MIC) values of *Castanea, Cistus,* and *Rubus* bee-pollen extracts on selected pathogen strains growth (O.D. 660 nm).

Aims Materials & Results Conclusions

pre-treatment

CHOP IL-6 COX-2 ICAM-1 ROS

Effects of 1 hour pre-treatment with 10µg/ml *Castanea* bee-pollen extract on HMEC-1 exposed 2 hours to 0.3µM thapsigargin (thaps)

✓ Bee-pollen samples contained high levels of phytochemicals, good *in vitro* and *ex vivo* antioxidant activities, as well as antibacterial action.

 \checkmark Our findings suggest a preventive action in protecting HMEC-1 from ER-stress induced by thapsigargin exposure.

 \checkmark Bee-pollens, especially *Castanea* species, represent a good natural antibacterial and a potential nutraceutical product useful in the prevention of free radical and ER-stress-associated diseases.

