

SCREENING OF VOLATILE COMPOUNDS IN BEVERAGE CANS USING PURGE AND TRAP (P&T) TECHNIQUE COUPLED TO GC-MS

Antía Lestido, Patricia Vázquez Loureiro, Raquel Sendón, Perfecto Paseiro Losada, Ana Rodríguez Bernaldo de Quirós

Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy. University of Santiago de Compostela, Spain.

It is well known that packaging materials can be a potential source of contaminants. The migration of chemicals from packaging to food and beverages is one of the main concerns for food safety authorities [1].

In the present study, a screening method was performed to investigate potential volatile migrants from ten polymeric can coatings of beverages. The sample was directly analyzed using a purge and trap (P&T) system coupled to gas chromatography with mass spectrometry detection (GC-MS). This technique allows to concentrate the volatiles in a sorbent material.

It is important to consider that, in this study, the samples analyzed were already in contact with the food, since the material was not available prior to contact. Therefore, the mass transfer could take place in both directions, migration from the packaging to the food and sorption from the food into the packaging. Moreover, it should be taken into account that the analysis of the material includes both sides, internal and external

FERIALS AND METHOD

Sam

Purg

Purg

Desor

Desor

Table 2:

Desc

SAMPLES OF BEVERAGES

CODE	DESCRIPTION	ORIGIN
BC01	Traditional Beer	Spain
BC02	Vodka mixed drink	Italy
BC03	Mixed lemon flavour	Spain
BC04	Energy drink zero	Ireland
BC05	Star wars space punch	Germany
BC06	Green cola	Spain
BC07	Tonic original	Spain
BC08	Tonic water original	Spain
BC09	Premium tonic water	Germany
BC10	Natural mineral water drink	Spain
DCIU		Jpani

Table 1: Information about the samples included in the study.

Limonene

IDENTIFICATION OF POTENTIAL VOLATILE MIGRANTS FROM POLYMERIC CAN COATINGS

For the analysis of potential volatiles from polymeric can coatings a previous step of concentration was performed using a Teledyne Tekmar Stratum Purge and Trap (P&T) system. The GC-MS analysis was carried out using a Finnigan Trace Gas Chromatograph Ultra with a Finnigan Trace DSQ mass detector.

ple T ^a	90 °C	Carrier gas	Helium 1mL/min
e flow	40 mL/min	Column	Rxi-624Sil MS (30m x 0.25mm x 1.40
e time	20 min	Column	μm)
rb time	2 min	Gradient T ^a	45-250°C
orb T ^a	250 °C	Ionization source	Electron impact
rb flow	400 mL/min	Transfer line T ^a	250 °C
Experimental conditions of P&T.		Source T ^a	250 °C
		Data acquisition	Full scan (range m/z 20-500)
		Spectrum library	NIST/EPA/NIH 11 v. 2.0 & Wiley 8th

Table 3: Experimental conditions of GC-MS.

AGENCIA ESTATAL DE INVESTIGACIÓN

✤ A wide variety of compounds including alcohols, ethers, aldehydes

Figure 1: GC-MS chromatogram of the sample BC08.

TR (min)	CAS Number	Compound Name	m/z	BC 01	BC 02	BC 03	BC 04	BC 05	BC 06	BC 07	BC 08	BC 09	BC 10
7.85	71-36-3	Butanol	56,41	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
8.36	110-62-3	Pentanal	44, 58									Х	
9.86	108-88-3	Toluene	91 <i>,</i> 65	Х	Х		Х	Х	Х		Х	Х	
13.75	80-56-8	α-pinene	93 <i>,</i> 77					Х					
13.79	111-76-2	2-butoxyethanol	57 <i>,</i> 45	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
15.92	124-13-0	Octanal	43,56	Х		Х	Х		Х		Х		
17.03	108-95-2	Phenol	94,66	Х	Х	Х	Х		Х		Х		Х
17.10	1120-21-4	Undecane	57 <i>,</i> 43	Х		Х		Х	Х		Х		
18.09	124-19-6	Nonanal	57,70	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
20.09	98-55-5	α-terpineol	59 <i>,</i> 93					Х				Х	
20.97	100-97-0	Hexamethylenetetramine	42,140	Х			Х		Х				
21.16	122-99-6	2-phenoxyethanol	94, 77				Х						
22.47	105-60-2	Caprolactam	56, 113		Х	Х				Х	Х		Х
22.74	629-59-4	Tetradecane	57,71			Х	Х	Х			Х	Х	Х
22.94	102-76-1	Triacetin	43, 145		Х	Х	Х		Х	Х			Х
25.03	719-22-2	2,6-di-tert-butyl-1,4-benzoquinone	177, 135		Х	Х			Х		Х		Х
27.23	84-66-2	Diethyl phthalate	149, 177	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
28.00	119-61-9	Benzophenone	105, 77						Х				

- and some phthalates such as diethyl phthalate were detected using this screening technique. Only compounds with the best matches found during the library search were considered for the study.
- Figure 1 show the GC-MS chromatogram of the sample BC08. As can be seen, the most intense peak corresponds to limonene, probably it comes from the beverage.
- Eighteen compounds were positively confirmed by injection of the respective standard comparing the retention times and their respective mass spectra (Table 4).
- To the best of our knowledge very limited literature about the application of this technique to analyze polymeric coatings have been reported.
- This study also allows to obtain information on the production of coatings. For example, 2-butoxyethanol was used in the polymerization step and/or as a solvent

Table 4: Chemicals selected identified in the polymeric can coatings analyzed.

keterences

(1)[1] Poças, M. F. et al., Trends in Food Science & Technology 18 (2007) 219-230.

The study was financially supported by the Ministerio de Ciencia, Innovación y Universidades, by Fondo Europeo de Desarrollo Regional (FEDER), and by Agencia Estatal de Investigación Ref.No. PGC2018-094518-B-I00 "MIGRACOATING" (MINECO/FEDER, UE). Antía Lestido is grateful for her grant "Programa de axudas á etapa predoutoral" da Xunta de Galicia (Consellería de Cultura, Educación e Ordenación

